Jiang Xuchuan, Zeng Qinghua, Yu Aibing
School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
Langmuir. 2007 Feb 13;23(4):2218-23. doi: 10.1021/la062797z.
The structural and optical stability of nanoparticles directly influences their applications. The shape evolution of silver nanoplates synthesized in the presence of bis(2-ethylhexyl) sulfosuccinate (AOT) could be effectively frozen using thiols in aqueous solution. These thiols (e.g., 1-hexanethiol, 1-octanethiol, 1-dodecanethiol, and 1-hexadecanethiol) exhibit stronger surface affinity on the silver crystalline surfaces. This is evidenced from both the unchanged shape/size of nanoplates and their unshifted plasmon resonances in optical absorption. To quantitatively explain the thiol-frozen shape evolution mechanism of silver nanoplates at molecular scale, molecular dynamics simulation was performed. The results show that these thiols exhibit larger interaction energies than AOT molecules on the silver atomic surfaces and hence freeze the shape evolution of silver nanoparticles. This thiol-frozen strategy would not only be useful for stabilizing nanoparticles but would also allow the introduction of a wide range of surface chemical functionalities to the nanoparticles for potential applications in nanosensors.
纳米颗粒的结构和光学稳定性直接影响其应用。在双(2-乙基己基)磺基琥珀酸酯(AOT)存在下合成的银纳米片的形状演变可以通过在水溶液中使用硫醇有效地冻结。这些硫醇(例如1-己硫醇、1-辛硫醇、1-十二烷硫醇和1-十六烷硫醇)在银晶体表面表现出更强的表面亲和力。这从纳米片不变的形状/尺寸及其在光吸收中未移动的等离子体共振都得到了证明。为了在分子尺度上定量解释银纳米片的硫醇冻结形状演变机制,进行了分子动力学模拟。结果表明,这些硫醇在银原子表面上表现出比AOT分子更大的相互作用能,从而冻结了银纳米颗粒的形状演变。这种硫醇冻结策略不仅对稳定纳米颗粒有用,而且还允许将广泛的表面化学功能引入纳米颗粒,以用于纳米传感器的潜在应用。