Wasserberg Dorothee, Meskers Stefan C J, Janssen René A J
Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
J Phys Chem A. 2007 Mar 1;111(8):1381-8. doi: 10.1021/jp066055q. Epub 2007 Feb 6.
The mechanism for triplet energy transfer from the green-emitting fac-tris[2-(4'-tert-butylphenyl)pyridinato]iridium (Ir(tBu-ppy)3) complex to the red-emitting bis[2-(2'-benzothienyl)pyridinato-N,C3')(acetylacetonato)iridium (Ir(btp)2(acac)) phosphor has been investigated using steady-state and time-resolved photoluminescence spectroscopy. [2,2';5,'2' ']Terthiophene (3T) was also used as triplet energy acceptor to differentiate between the two common mechanisms for energy transfer, i.e., the direct exchange of electrons (Dexter transfer) or the coupling of transition dipoles (Förster transfer). Unlike Ir(btp)2(acac), 3T can only be active in Dexter energy transfer because it has a negligible ground state absorption to the 3(pi-pi*) state. The experiments demonstrate that in semidilute solution, the 3MLCT state of Ir(tBu-ppy)3 can transfer its triplet energy to the lower-lying 3(pi-pi*) states of both Ir(btp)2(acac) and 3T. For both acceptors, this transfer occurs via a diffusion-controlled reaction with a common rate constant (ken = 3.8 x 10(9) L mol-1 s-1). In a solid-state polymer matrix, the two acceptors, however, show entirely different behavior. The 3MLCT phosphorescence of Ir(tBu-ppy)3 is strongly quenched by Ir(btp)2(acac) but not by 3T. This reveals that under conditions where molecular diffusion is inhibited, triplet energy transfer only occurs via the Förster mechanism, provided that the transition dipole moments involved on energy donor and acceptor are not negligible. With the use of the Förster radius for triplet energy transfer from Ir(tBu-ppy)3 to Ir(btp)2(acac) of R0 = 3.02 nm, the experimentally observed quenching is found to agree quantitatively with a model for Förster energy transfer that assumes a random distribution of acceptors in a rigid matrix.
利用稳态和时间分辨光致发光光谱,研究了从绿色发光的面式三[2-(4'-叔丁基苯基)吡啶基]铱(Ir(tBu-ppy)3)配合物到红色发光的双2-(2'-苯并噻吩基)吡啶基-N,C3'铱(Ir(btp)2(acac))磷光体的三线态能量转移机制。[2,2';5,'2' ']三联噻吩(3T)也用作三线态能量受体,以区分两种常见的能量转移机制,即电子的直接交换(德克斯特转移)或跃迁偶极矩的耦合(福斯特转移)。与Ir(btp)2(acac)不同,3T仅在德克斯特能量转移中起作用,因为它对3(π-π*)态的基态吸收可忽略不计。实验表明,在半稀溶液中,Ir(tBu-ppy)3的3MLCT态可以将其三线态能量转移到Ir(btp)2(acac)和3T的较低能级3(π-π*)态。对于这两种受体,这种转移通过具有共同速率常数(ken = 3.8 x 10(9) L mol-1 s-1)的扩散控制反应发生。然而,在固态聚合物基质中,这两种受体表现出完全不同的行为。Ir(tBu-ppy)3的3MLCT磷光被Ir(btp)2(acac)强烈猝灭,但不被3T猝灭。这表明在分子扩散受到抑制的条件下,只要能量供体和受体上涉及的跃迁偶极矩不可忽略,三线态能量转移仅通过福斯特机制发生。利用从Ir(tBu-ppy)3到Ir(btp)2(acac)的三线态能量转移的福斯特半径R0 = 3.02 nm,发现实验观察到的猝灭与假设受体在刚性基质中随机分布的福斯特能量转移模型在数量上一致。