Suppr超能文献

由竞争非局部非线性支持的偶宇称和奇宇称稳定孤子。

Stable solitons of even and odd parities supported by competing nonlocal nonlinearities.

作者信息

Mihalache D, Mazilu D, Lederer F, Crasovan L-C, Kartashov Y V, Torner L, Malomed B A

机构信息

Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 407 Atomistilor, Magurele-Bucharest, 077125, Romania.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 2):066614. doi: 10.1103/PhysRevE.74.066614. Epub 2006 Dec 29.

Abstract

We introduce a one-dimensional phenomenological model of a nonlocal medium featuring focusing cubic and defocusing quintic nonlocal optical nonlinearities. By means of numerical methods, we find families of solitons of two types, even-parity (fundamental) and dipole-mode (odd-parity) ones. Stability of the solitons is explored by means of computation of eigenvalues associated with modes of small perturbations, and tested in direct simulations. We find that the stability of the fundamental solitons strictly follows the Vakhitov-Kolokolov criterion, whereas the dipole solitons can be destabilized through a Hamiltonian-Hopf bifurcation. The solitons of both types may be stable in the nonlocal model with only quintic self-attractive nonlinearity, in contrast with the instability of all solitons in the local version of the quintic model.

摘要

我们引入了一种一维现象学模型,该模型描述了具有聚焦立方和散焦五次非局部光学非线性的非局部介质。通过数值方法,我们找到了两种类型的孤子族,即偶宇称(基态)孤子和偶极模(奇宇称)孤子。通过计算与小扰动模式相关的特征值来研究孤子的稳定性,并在直接模拟中进行测试。我们发现,基态孤子的稳定性严格遵循瓦赫托夫 - 科洛科洛夫准则,而偶极孤子可能会通过哈密顿 - 霍普夫分岔而失稳。与五次模型的局部版本中所有孤子的不稳定性相反,在仅具有五次自吸引非线性的非局部模型中,这两种类型的孤子都可能是稳定的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验