Suppr超能文献

基于正交小波变换的心率变异性动态分析

Dynamic analysis of heart rate variability based on orthogonal wavelet transform.

作者信息

Lu Shan, Yang Hao, Ye Wenyu, Xiao Dongping, Wu Xiaoyu

机构信息

Mindray Bio-Med. Electron. Co. Ltd., Shenzen.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2005;2005:5548-50. doi: 10.1109/IEMBS.2005.1615741.

Abstract

The analysis of heart rate variability (HRV) has become a tool for noninvasively detecting the cardiovascular modulation of autonomic nervous system (ANS). Traditional analysis in frequency-domain mainly includes calculating the power and the peak frequency of each physiological frequency component. Whether employing the non-parametric or parametric method to estimate the power spectrum density (PSD), the approximate stationarity of HRV is presupposed. However, only in short-term analysis can data meet this condition. With the increase of the record time, the nonstationarity of HRV notably appears. A dynamic analysis method based on orthogonal wavelet transform was proposed in this paper, which not only can obtain the traditional indices in frequency-domain, but can compute their dynamic values varying with time, called short-time power and short-time LF/HF ratio. The latter can evaluate the activity of autonomic nervous system. Finally the method was applied to trace the balance of ANS in Atropin drug experiment.

摘要

心率变异性(HRV)分析已成为一种用于无创检测自主神经系统(ANS)心血管调节功能的工具。传统的频域分析主要包括计算各生理频率成分的功率和峰值频率。无论采用非参数法还是参数法来估计功率谱密度(PSD),都预先假定了HRV的近似平稳性。然而,只有在短期分析中数据才能满足这一条件。随着记录时间的增加,HRV的非平稳性明显显现。本文提出了一种基于正交小波变换的动态分析方法,该方法不仅可以获得传统的频域指标,还可以计算其随时间变化的动态值,即短时功率和短时低频/高频比值。后者可以评估自主神经系统的活动。最后将该方法应用于阿托品药物实验中自主神经系统平衡的追踪。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验