文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

希尔伯特-黄变换在心脏健康的心率变异性分析中的应用。

Hilbert-Huang transform for analysis of heart rate variability in cardiac health.

机构信息

School of Economics and Commerce and the Research Center of Financial Engineering, South China University of Technology, B10, Education Mega, Guangzhou 510006, China.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2011 Nov-Dec;8(6):1557-67. doi: 10.1109/TCBB.2011.43.


DOI:10.1109/TCBB.2011.43
PMID:21383423
Abstract

This paper introduces a modified technique based on Hilbert-Huang transform (HHT) to improve the spectrum estimates of heart rate variability (HRV). In order to make the beat-to-beat (RR) interval be a function of time and produce an evenly sampled time series, we first adopt a preprocessing method to interpolate and resample the original RR interval. Then, the HHT, which is based on the empirical mode decomposition (EMD) approach to decompose the HRV signal into several monocomponent signals that become analytic signals by means of Hilbert transform, is proposed to extract the features of preprocessed time series and to characterize the dynamic behaviors of parasympathetic and sympathetic nervous system of heart. At last, the frequency behaviors of the Hilbert spectrum and Hilbert marginal spectrum (HMS) are studied to estimate the spectral traits of HRV signals. In this paper, two kinds of experiment data are used to compare our method with the conventional power spectral density (PSD) estimation. The analysis results of the simulated HRV series show that interpolation and resampling are basic requirements for HRV data processing, and HMS is superior to PSD estimation. On the other hand, in order to further prove the superiority of our approach, real HRV signals are collected from seven young health subjects under the condition that autonomic nervous system (ANS) is blocked by certain acute selective blocking drugs: atropine and metoprolol. The high-frequency power/total power ratio and low-frequency power/high-frequency power ratio indicate that compared with the Fourier spectrum based on principal dynamic mode, our method is more sensitive and effective to identify the low-frequency and high-frequency bands of HRV.

摘要

本文提出了一种基于希尔伯特-黄变换(HHT)的改进技术,以提高心率变异性(HRV)的谱估计。为了使逐拍(RR)间期成为时间的函数,并产生均匀采样的时间序列,我们首先采用预处理方法对原始 RR 间期进行插值和重采样。然后,提出了基于经验模态分解(EMD)方法的 HHT,将 HRV 信号分解为几个单分量信号,通过希尔伯特变换将其转换为解析信号,以提取预处理时间序列的特征,并描述心脏副交感和交感神经系统的动态行为。最后,研究了希尔伯特谱和希尔伯特边际谱(HMS)的频率行为,以估计 HRV 信号的谱特征。本文使用两种实验数据将我们的方法与传统的功率谱密度(PSD)估计进行比较。模拟 HRV 系列的分析结果表明,插值和重采样是 HRV 数据处理的基本要求,HMS 优于 PSD 估计。另一方面,为了进一步证明我们方法的优越性,我们从七名年轻健康受试者中采集了自主神经系统(ANS)被某些急性选择性阻断药物阻断时的真实 HRV 信号:阿托品和美托洛尔。高频功率/总功率比和低频功率/高频功率比表明,与基于主动态模式的傅里叶谱相比,我们的方法对识别 HRV 的低频和高频带更敏感和有效。

相似文献

[1]
Hilbert-Huang transform for analysis of heart rate variability in cardiac health.

IEEE/ACM Trans Comput Biol Bioinform. 2011

[2]
Quantifying errors in spectral estimates of HRV due to beat replacement and resampling.

IEEE Trans Biomed Eng. 2005-4

[3]
Sampling frequency of the RR interval time series for spectral analysis of heart rate variability.

J Med Eng Technol. 2004

[4]
An improved windowing technique for heart rate variability power spectrum estimation.

J Med Eng Technol. 2005

[5]
Investigating the interaction between heart rate variability and sleep EEG using nonlinear algorithms.

J Neurosci Methods. 2013-8-18

[6]
[The analysis method of the Hilbert spectrum entropy of dividing frequency range for signals of heart rate variability].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2011-4

[7]
Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals.

IEEE Trans Biomed Eng. 1998-6

[8]
Kullback-Leibler clustering of continuous wavelet transform measures of heart rate variability.

Biomed Sci Instrum. 2004

[9]
Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications.

Proc Inst Mech Eng H. 2012-3

[10]
Orthonormal-basis partitioning and time-frequency representation of cardiac rhythm dynamics.

IEEE Trans Biomed Eng. 2005-5

引用本文的文献

[1]
Dynamic brain-heart interaction in sleep characterized by variational phase-amplitude coupling framework.

Commun Biol. 2025-8-16

[2]
Prognostic Properties of Instantaneous Amplitudes Maxima of Earth Surface Tremor.

Entropy (Basel). 2024-8-21

[3]
Spectral Analysis of Heart Rate Variability Based on the Hilbert-Huang Method.

Dokl Biochem Biophys. 2023-8

[4]
Hybrid-Pattern Recognition Modeling with Arrhythmia Signal Processing for Ubiquitous Health Management.

Sensors (Basel). 2022-1-17

[5]
A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals.

Sensors (Basel). 2021-9-13

[6]
AIoT-Enabled Rehabilitation Recognition System-Exemplified by Hybrid Lower-Limb Exercises.

Sensors (Basel). 2021-7-12

[7]
Influence of Sliding Time Window Size Selection Based on Heart Rate Variability Signal Analysis on Intelligent Monitoring of Noxious Stimulation under Anesthesia.

Neural Plast. 2021

[8]
Transdermal Optical Imaging Reveal Basal Stress via Heart Rate Variability Analysis: A Novel Methodology Comparable to Electrocardiography.

Front Psychol. 2018-2-8

[9]
Toward Capturing Momentary Changes of Heart Rate Variability by a Dynamic Analysis Method.

PLoS One. 2015-7-14

[10]
Heart rate variability analysis using robust period detection.

Biomed Eng Online. 2014-9-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索