Aksak Burak, Murphy Michael P, Sitti Metin
NanoRobotics Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Langmuir. 2007 Mar 13;23(6):3322-32. doi: 10.1021/la062697t. Epub 2007 Feb 7.
This paper proposes an approximate adhesion model for fibrillar adhesives for developing a fibrillar adhesive design methodology and compares numerical simulation adhesion results with macroscale adhesion data from polymer microfiber array experiments. A technique for fabricating microfibers with a controlled angle is described for the first time. Polyurethane microfibers with different hardnesses, angles, and aspect ratios are fabricated using optical lithography and polymer micromolding techniques and tested with a custom tensile adhesion measurement setup. Macroscale adhesion and overall work of adhesion of the microfiber arrays are measured and compared with the models to observe the effect of fiber geometry and preload. The adhesion strength and work of adhesion behavior of short and long vertical and long angled fiber arrays have similar trends with the numerical simulations. A scheme is also proposed to aid in optimized fiber adhesive design.
本文提出了一种用于纤维状粘合剂的近似粘附模型,以开发一种纤维状粘合剂设计方法,并将数值模拟粘附结果与聚合物微纤维阵列实验的宏观粘附数据进行比较。首次描述了一种制造具有可控角度微纤维的技术。使用光刻和聚合物微成型技术制造具有不同硬度、角度和纵横比的聚氨酯微纤维,并使用定制的拉伸粘附测量装置进行测试。测量微纤维阵列的宏观粘附力和总粘附功,并与模型进行比较,以观察纤维几何形状和预载荷的影响。短垂直和长角度纤维阵列的粘附强度和粘附功行为与数值模拟具有相似的趋势。还提出了一种方案来辅助优化纤维粘合剂设计。