Marcos Pedro A, Alonso Julio A, López María J
Departamento de Física, Universidad de Burgos, 09001 Burgos, Spain.
J Chem Phys. 2007 Jan 28;126(4):044705. doi: 10.1063/1.2430717.
A theoretical investigation on the structure, stability, and thermal behaviors of the smallest polymeric units, the dimers, formed from substitutionally Si-doped fullerenes is presented. A density functional based nonorthogonal tight-binding model has been employed for describing the interatomic interactions. The study focuses on those polymeric structures which involve Si-Si or Si-C interfullerene bonds. The binding energy of the dimers increases with their Si content from about 0.25 eV in C(60)-C(60) to about 4.5 eV in C(58)Si(2)-C(58)Si(2). Moreover, the C(59)SiC(59) dimer, linked through the sharing of the Si atom between the two fullerenes, has been also considered. Upon heating, the dimers eventually fragment into their constituent fullerene units. The fragmentation temperature correlates with the strength of the interfullerene bonds. C(58)Si(2)-C(58)Si(2) exhibits a higher thermal stability (fragmentation temperature of approximately 500 K) than the pure carbon C(60)-C(60) dimer (with a fragmentation temperature of approximately 325 K). Given the higher structural and thermal stabilities of the Si-doped fullerene dimers, the authors propose the use of substitutionally Si-doped fullerenes as the basic units for constructing new fullerene-based polymers.
本文对由取代硅掺杂富勒烯形成的最小聚合物单元——二聚体的结构、稳定性和热行为进行了理论研究。采用了基于密度泛函的非正交紧束缚模型来描述原子间相互作用。该研究聚焦于那些涉及硅-硅或硅-碳富勒烯间键的聚合物结构。二聚体的结合能随着硅含量的增加而增大,从C(60)-C(60)中的约0.25 eV增加到C(58)Si(2)-C(58)Si(2)中的约4.5 eV。此外,还考虑了通过两个富勒烯之间共享硅原子相连的C(59)SiC(59)二聚体。加热时,二聚体最终会分解成其组成的富勒烯单元。分解温度与富勒烯间键的强度相关。C(58)Si(2)-C(58)Si(2)比纯碳C(60)-C(60)二聚体表现出更高的热稳定性(分解温度约为500 K),而C(60)-C(60)二聚体的分解温度约为325 K。鉴于硅掺杂富勒烯二聚体具有更高的结构和热稳定性,作者提议使用取代硅掺杂富勒烯作为构建新型富勒烯基聚合物的基本单元。