Rispail N, Dita M-A, González-Verdejo C, Pérez-de-Luque A, Castillejo M-A, Prats E, Román B, Jorrín J, Rubiales D
Instituto de Agricultura Sostenible, CSIC, Apdo. 4084, E-14080, Córdoba, Spain.
Embrapa Mandioca e Fruticultura Tropica, CP 007, 44380-000 Cruz das Almas-BA, Brasil.
New Phytol. 2007;173(4):703-712. doi: 10.1111/j.1469-8137.2007.01980.x.
Parasitic weeds pose severe constraint on major agricultural crops. Varying levels of resistance have been identified and exploited in the breeding programmes of several crops. However, the level of protection achieved to date is either incomplete or ephemeral. Resistance is mainly determined by the coexistence of several mechanisms controlled by multigenic and quantitative systems. Efficient control of the parasite requires a better understanding of the interaction and their associated resistance mechanisms at the histological, genetic and molecular levels. Application of postgenomic technologies and the use of model plants should improve the understanding of the plant-parasitic plant interaction and drive not only breeding programmes through either marker-assisted selection (MAS) or transgenesis but also the development of alternative methods to control the parasite. This review presents the current approaches targeting the characterization of resistance mechanisms and explores their potentiality to control parasitic plants.
寄生杂草对主要农作物构成严重威胁。在几种作物的育种计划中已鉴定并利用了不同程度的抗性。然而,迄今为止所实现的保护水平要么不完整,要么是短暂的。抗性主要由多基因和数量系统控制的几种机制共同决定。有效控制这种寄生虫需要在组织学、遗传学和分子水平上更好地理解相互作用及其相关的抗性机制。后基因组技术的应用和模式植物的使用应能增进对植物与寄生植物相互作用的理解,不仅通过标记辅助选择(MAS)或转基因推动育种计划,还能促进开发控制这种寄生虫的替代方法。本综述介绍了目前针对抗性机制表征的方法,并探讨了它们控制寄生植物的潜力。