Gu Jenny, Bourne Philip E
Department of Pharmacology and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA.
BMC Bioinformatics. 2007 Feb 7;8:45. doi: 10.1186/1471-2105-8-45.
The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA) is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET) uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2), a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function.
TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2). The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2.
The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function.
蛋白质功能及相关构象变化的潜在机制主要由一系列影响整体结构的局部熵波动主导,但仅由少数关键残基介导。过渡动力学分析(TDA)是一种检测局部蛋白质灵活性变化的新方法,这些变化源于不同构象之间,例如配体结合。此外,熵转移的位置影响顶点(PIVET)利用TDA来识别对全局波动有重大影响的重要残基接触变化。我们展示了这些方法在细胞周期蛋白依赖性激酶2(CDK2)上的实用性,该系统具有该蛋白在多种功能相关构象下的晶体结构以及揭示局部波动变化对蛋白质功能重要性的实验数据。
TDA和PIVET成功识别出在细胞周期蛋白依赖性激酶2(CDK2)激活周期中负责特定构象区域波动的特定残基。检测到的蛋白质灵活性局部变化已通过实验证实对激酶的调节和功能至关重要。这些方法还突出了先前分子动力学模拟中可能存在的错误,为了理解细胞周期调节中的这个关键因子,这些错误需要得到解决。最后,报道了将熵补偿作为CDK2蛋白质功能的一种可能变构机制的应用。
TDA和PIVET所体现的方法提供了一种快速途径,可识别对蛋白质功能重要的局部波动变化以及促成这些变化的残基接触。此外,这些方法可用于检查蛋白质动力学模拟中可能存在的错误,并有可能促进对熵对蛋白质变构和功能贡献的更好理解。