Jacob Vincent, Brasier Daniel J, Erchova Irina, Feldman Dan, Shulz Daniel E
Unité de Neurosciences Intégratives et Computationnelles, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France.
J Neurosci. 2007 Feb 7;27(6):1271-84. doi: 10.1523/JNEUROSCI.4264-06.2007.
Spike timing-dependent plasticity (STDP) is a computationally powerful form of plasticity in which synapses are strengthened or weakened according to the temporal order and precise millisecond-scale delay between presynaptic and postsynaptic spiking activity. STDP is readily observed in vitro, but evidence for STDP in vivo is scarce. Here, we studied spike timing-dependent synaptic depression in single putative pyramidal neurons of the rat primary somatosensory cortex (S1) in vivo, using two techniques. First, we recorded extracellularly from layer 2/3 (L2/3) and L5 neurons, and paired spontaneous action potentials (postsynaptic spikes) with subsequent subthreshold deflection of one whisker (to drive presynaptic afferents to the recorded neuron) to produce "post-leading-pre" spike pairings at known delays. Short delay pairings (<17 ms) resulted in a significant decrease of the extracellular spiking response specific to the paired whisker, consistent with spike timing-dependent synaptic depression. Second, in whole-cell recordings from neurons in L2/3, we paired postsynaptic spikes elicited by direct-current injection with subthreshold whisker deflection to drive presynaptic afferents to the recorded neuron at precise temporal delays. Post-leading-pre pairing (<33 ms delay) decreased the slope and amplitude of the PSP evoked by the paired whisker, whereas "pre-leading-post" delays failed to produce depression, and sometimes produced potentiation of whisker-evoked PSPs. These results demonstrate that spike timing-dependent synaptic depression occurs in S1 in vivo, and is therefore a plausible plasticity mechanism in the sensory cortex.
尖峰时间依赖可塑性(STDP)是一种计算能力强大的可塑性形式,其中突触根据突触前和突触后尖峰活动之间的时间顺序和精确的毫秒级延迟而增强或减弱。STDP在体外很容易观察到,但体内STDP的证据却很少。在这里,我们使用两种技术研究了大鼠初级体感皮层(S1)单个假定锥体神经元中尖峰时间依赖的突触抑制。首先,我们从第2/3层(L2/3)和第5层神经元进行细胞外记录,并将自发动作电位(突触后尖峰)与随后一根触须的阈下偏转配对(以驱动突触前传入到记录的神经元),在已知延迟下产生“后导前”尖峰配对。短延迟配对(<17毫秒)导致特定于配对触须的细胞外尖峰反应显著降低,这与尖峰时间依赖的突触抑制一致。其次,在L2/3神经元的全细胞记录中,我们将通过直流注入引发的突触后尖峰与阈下触须偏转配对,以在精确的时间延迟下驱动突触前传入到记录的神经元。后导前配对(<33毫秒延迟)降低了配对触须诱发的PSP的斜率和幅度,而“前导后”延迟未能产生抑制,有时还会使触须诱发的PSP增强。这些结果表明,尖峰时间依赖的突触抑制在体内的S1中发生,因此是感觉皮层中一种合理的可塑性机制。