Suppr超能文献

神经元行波利用突触可塑性形成优先通路。

Neuronal traveling waves form preferred pathways using synaptic plasticity.

作者信息

Butler Kendall, Cruz Luis

机构信息

Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA.

出版信息

J Comput Neurosci. 2025 Mar;53(1):181-198. doi: 10.1007/s10827-024-00890-2. Epub 2024 Dec 27.

Abstract

Traveling waves of neuronal spiking activity are commonly observed across the brain, but their intrinsic function is still a matter of investigation. Experiments suggest that they may be valuable in the consolidation of memory or learning, indicating that consideration of traveling waves in the presence of plasticity might be important. A possible outcome of this consideration is that the synaptic pathways, necessary for the propagation of these waves, will be modified by the waves themselves. This will create a feedback loop where both the traveling waves and the strengths of the available synaptic pathways will change. To computationally investigate this, we model a sheet of cortical tissue by considering a quasi two-dimensional network of model neurons locally connected with plastic synaptic weights using Spike-Timing Dependent Plasticity (STDP). By using different stimulation conditions (central, stochastic, and alternating stimulation), we demonstrate that starting from a random network, traveling waves with STDP will form and strengthen propagation pathways. With progressive formation of traveling waves, we observe increases in synaptic weight along the direction of wave propagation, increases in propagation speed when pathways are strengthened over time, and an increase in the local order of synaptic weights. We also present evidence that the interaction between traveling waves and plasticity can serve as a mechanism of network-wide competition between available pathways. With an improved understanding of the interactions between traveling waves and synaptic plasticity, we can approach a fuller understanding of mechanisms of learning, computation, and processing within the brain.

摘要

神经元尖峰活动的行波在整个大脑中普遍存在,但其内在功能仍有待研究。实验表明,它们可能在记忆巩固或学习中具有重要作用,这表明在可塑性存在的情况下考虑行波可能很重要。这种考虑的一个可能结果是,这些波传播所需的突触通路将被波本身改变。这将创建一个反馈回路,其中行波和可用突触通路的强度都会发生变化。为了从计算上研究这一点,我们通过考虑一个准二维的模型神经元网络来模拟一片皮质组织,这些神经元通过使用尖峰时间依赖可塑性(STDP)的可塑性突触权重进行局部连接。通过使用不同的刺激条件(中央刺激、随机刺激和交替刺激),我们证明从一个随机网络开始,具有STDP的行波将形成并加强传播通路。随着行波的逐步形成,我们观察到沿波传播方向的突触权重增加,当通路随着时间的推移得到加强时传播速度增加,以及突触权重局部有序性的增加。我们还提供证据表明,行波与可塑性之间的相互作用可以作为可用通路之间全网络竞争的一种机制。随着对行波与突触可塑性之间相互作用的更好理解,我们可以更全面地理解大脑中的学习、计算和处理机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca68/11868204/bf77e33da6fd/10827_2024_890_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验