Suppr超能文献

粘着斑复合体为细菌滑行运动提供动力的证据。

Evidence that focal adhesion complexes power bacterial gliding motility.

作者信息

Mignot Tâm, Shaevitz Joshua W, Hartzell Patricia L, Zusman David R

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.

出版信息

Science. 2007 Feb 9;315(5813):853-6. doi: 10.1126/science.1137223.

Abstract

The bacterium Myxococcus xanthus has two motility systems: S motility, which is powered by type IV pilus retraction, and A motility, which is powered by unknown mechanism(s). We found that A motility involved transient adhesion complexes that remained at fixed positions relative to the substratum as cells moved forward. Complexes assembled at leading cell poles and dispersed at the rear of the cells. When cells reversed direction, the A-motility clusters relocalized to the new leading poles together with S-motility proteins. The Frz chemosensory system coordinated the two motility systems. The dynamics of protein cluster localization suggest that intracellular motors and force transmission by dynamic focal adhesions can power bacterial motility.

摘要

黄色粘球菌有两种运动系统

S运动系统,由IV型菌毛收缩提供动力;A运动系统,其动力来源机制不明。我们发现A运动系统涉及瞬时粘附复合体,当细胞向前移动时,这些复合体相对于基质保持在固定位置。复合体在细胞前端极组装,并在细胞后端分散。当细胞改变方向时,A运动簇与S运动蛋白一起重新定位到新的前端极。Frz化学感应系统协调这两种运动系统。蛋白质簇定位的动态变化表明,细胞内马达和动态粘着斑的力传递可为细菌运动提供动力。

相似文献

1
Evidence that focal adhesion complexes power bacterial gliding motility.
Science. 2007 Feb 9;315(5813):853-6. doi: 10.1126/science.1137223.
2
Microbiology. Bright insight into bacterial gliding.
Science. 2007 Feb 9;315(5813):773-4. doi: 10.1126/science.1138995.
3
The mysterious nature of bacterial surface (gliding) motility: A focal adhesion-based mechanism in Myxococcus xanthus.
Semin Cell Dev Biol. 2015 Oct;46:143-54. doi: 10.1016/j.semcdb.2015.10.033. Epub 2015 Oct 28.
4
Myxococcus xanthus gliding motors are elastically coupled to the substrate as predicted by the focal adhesion model of gliding motility.
PLoS Comput Biol. 2014 May 8;10(5):e1003619. doi: 10.1371/journal.pcbi.1003619. eCollection 2014 May.
5
The elusive engine in Myxococcus xanthus gliding motility.
Cell Mol Life Sci. 2007 Nov;64(21):2733-45. doi: 10.1007/s00018-007-7176-x.
6
The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA.
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):E186-93. doi: 10.1073/pnas.1421073112. Epub 2014 Dec 30.
7
Uncovering the mystery of gliding motility in the myxobacteria.
Annu Rev Genet. 2011;45:21-39. doi: 10.1146/annurev-genet-110410-132547. Epub 2011 Sep 9.
8
Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system.
Curr Biol. 2000 Sep 21;10(18):1143-6. doi: 10.1016/s0960-9822(00)00705-3.
9
Regulated pole-to-pole oscillations of a bacterial gliding motility protein.
Science. 2005 Nov 4;310(5749):855-7. doi: 10.1126/science.1119052.

引用本文的文献

1
Capillary interactions drive the self-organization of bacterial colonies.
Nat Phys. 2025 Jul 28. doi: 10.1038/s41567-025-02965-y.
2
Dissecting the physics of bacterial biofilms with agent-based simulations.
Curr Opin Solid State Mater Sci. 2025 Jul;37. doi: 10.1016/j.cossms.2025.101228. Epub 2025 May 31.
3
Milestones in the development of as a model multicellular bacterium.
J Bacteriol. 2025 Jul 24;207(7):e0007125. doi: 10.1128/jb.00071-25. Epub 2025 Jun 17.
4
RABiTPy: an open-source Python software for rapid, AI-powered bacterial tracking and analysis.
BMC Bioinformatics. 2025 May 18;26(1):127. doi: 10.1186/s12859-025-06145-w.
5
Structural model of a bacterial focal adhesion complex.
Commun Biol. 2025 Jan 24;8(1):119. doi: 10.1038/s42003-025-07550-w.
7
A geometrical theory of gliding motility based on cell shape and surface flow.
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2410708121. doi: 10.1073/pnas.2410708121. Epub 2024 Jul 19.
9
Quantifying gliding forces of filamentous cyanobacteria by self-buckling.
Elife. 2024 Jun 12;12:RP87450. doi: 10.7554/eLife.87450.
10
A lytic transglycosylase connects bacterial focal adhesion complexes to the peptidoglycan cell wall.
bioRxiv. 2024 Aug 12:2024.04.04.588103. doi: 10.1101/2024.04.04.588103.

本文引用的文献

1
Regulation of apicomplexan actin-based motility.
Nat Rev Microbiol. 2006 Aug;4(8):621-8. doi: 10.1038/nrmicro1465.
2
Regulated pole-to-pole oscillations of a bacterial gliding motility protein.
Science. 2005 Nov 4;310(5749):855-7. doi: 10.1126/science.1119052.
3
Force and flexibility of flailing myxobacteria.
Biophys J. 2005 Aug;89(2):945-50. doi: 10.1529/biophysj.105.062513. Epub 2005 May 20.
5
AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus.
J Bacteriol. 2004 Sep;186(18):6168-78. doi: 10.1128/JB.186.18.6168-6178.2004.
6
Focal adhesion regulation of cell behavior.
Biochim Biophys Acta. 2004 Jul 5;1692(2-3):103-19. doi: 10.1016/j.bbamcr.2004.04.007.
7
Dysfunctional MreB inhibits chromosome segregation in Escherichia coli.
EMBO J. 2003 Oct 1;22(19):5283-92. doi: 10.1093/emboj/cdg504.
8
Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus.
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5443-8. doi: 10.1073/pnas.0836639100. Epub 2003 Apr 18.
9
How myxobacteria glide.
Curr Biol. 2002 Mar 5;12(5):369-77. doi: 10.1016/s0960-9822(02)00716-9.
10
Effect of cellular filamentation on adventurous and social gliding motility of Myxococcus xanthus.
Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15178-83. doi: 10.1073/pnas.96.26.15178.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验