Institute for Theoretical Physics, Heidelberg University, Heidelberg 69120, Germany.
Bioquant-Center, Heidelberg University, Heidelberg 69120, Germany.
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2410708121. doi: 10.1073/pnas.2410708121. Epub 2024 Jul 19.
Gliding motility proceeds with little changes in cell shape and often results from actively driven surface flows of adhesins binding to the extracellular environment. It allows for fast movement over surfaces or through tissue, especially for the eukaryotic parasites from the phylum apicomplexa, which includes the causative agents of the widespread diseases malaria and toxoplasmosis. We have developed a fully three-dimensional active particle theory which connects the self-organized, actively driven surface flow over a fixed cell shape to the resulting global motility patterns. Our analytical solutions and numerical simulations show that straight motion without rotation is unstable for simple shapes and that straight cell shapes tend to lead to pure rotations. This suggests that the curved shapes of sporozoites and tachyzoites are evolutionary adaptations to avoid rotations without translation. Gliding motility is also used by certain myxo- or flavobacteria, which predominantly move on flat external surfaces and with higher control of cell surface flow through internal tracks. We extend our theory for these cases. We again find a competition between rotation and translation and predict the effect of internal track geometry on overall forward speed. While specific mechanisms might vary across species, in general, our geometrical theory predicts and explains the rotational, circular, and helical trajectories which are commonly observed for microgliders. Our theory could also be used to design synthetic microgliders.
滑行运动在细胞形状上几乎没有变化,通常是由主动驱动的黏附素表面流引起的,这些黏附素与细胞外环境结合。它允许在表面或组织中快速运动,特别是对于原生动物门顶复门的真核寄生虫,其中包括疟疾和弓形体病等广泛疾病的病原体。我们已经开发出一种完全的三维主动粒子理论,该理论将固定细胞形状上的自组织、主动驱动的表面流与产生的全局运动模式联系起来。我们的解析解和数值模拟表明,对于简单的形状,没有旋转的直线运动是不稳定的,并且直线形状的细胞往往导致纯旋转。这表明,疟原虫和速殖子的弯曲形状是为了避免没有翻译的旋转而进化的适应。某些粘细菌或黄杆菌也使用滑行运动,它们主要在平坦的外表面上移动,并且通过内部轨道更能控制细胞表面流。我们将我们的理论扩展到这些情况。我们再次发现旋转和翻译之间的竞争,并预测内部轨道几何形状对整体前进速度的影响。虽然特定的机制可能因物种而异,但总的来说,我们的几何理论预测并解释了常见的微滑翔器的旋转、圆形和螺旋轨迹。我们的理论也可以用于设计合成微滑翔器。