Toft Nils, Innocent Giles T, Gettinby George, Reid Stuart W J
Department of Large Animal Sciences, Faculty of Life Sciences, University of Copenhagen, Grønnegårdsvej 8, DK-1870 Frederiksberg C, Denmark.
Prev Vet Med. 2007 May 16;79(2-4):244-56. doi: 10.1016/j.prevetmed.2007.01.003. Epub 2007 Feb 9.
The accessibility of Markov Chain Monte Carlo (MCMC) methods for statistical inference have improved with the advent of general purpose software. This enables researchers with limited statistical skills to perform Bayesian analysis. Using MCMC sampling to do statistical inference requires convergence of the MCMC chain to its stationary distribution. There is no certain way to prove convergence; it is only possible to ascertain when convergence definitely has not been achieved. These methods are rather subjective and not implemented as automatic safeguards in general MCMC software. This paper considers a pragmatic approach towards assessing the convergence of MCMC methods illustrated by a Bayesian analysis of the Hui-Walter model for evaluating diagnostic tests in the absence of a gold standard. The Hui-Walter model has two optimal solutions, a property which causes problems with convergence when the solutions are sufficiently close in the parameter space. Using simulated data we demonstrate tools to assess the convergence and mixing of MCMC chains using examples with and without convergence. Suggestions to remedy the situation when the MCMC sampler fails to converge are given. The epidemiological implications of the two solutions of the Hui-Walter model are discussed.
随着通用软件的出现,马尔可夫链蒙特卡罗(MCMC)方法用于统计推断的可及性得到了改善。这使得统计技能有限的研究人员能够进行贝叶斯分析。使用MCMC抽样进行统计推断需要MCMC链收敛到其平稳分布。没有确定的方法来证明收敛;只能确定何时肯定没有实现收敛。这些方法相当主观,并且在一般的MCMC软件中没有作为自动保障措施来实施。本文考虑了一种务实的方法来评估MCMC方法的收敛性,通过对Hui-Walter模型进行贝叶斯分析来说明,该模型用于在没有金标准的情况下评估诊断测试。Hui-Walter模型有两个最优解,当这些解在参数空间中足够接近时,这一特性会导致收敛问题。我们使用模拟数据展示了一些工具,通过有收敛和无收敛的例子来评估MCMC链的收敛性和混合性。针对MCMC采样器未能收敛的情况给出了补救建议。讨论了Hui-Walter模型的两个解的流行病学意义。