Suppr超能文献

评估群体药代动力学分层贝叶斯模型中马尔可夫链蒙特卡罗模拟的收敛性。

Assessing convergence of Markov chain Monte Carlo simulations in hierarchical Bayesian models for population pharmacokinetics.

作者信息

Dodds Michael G, Vicini Paolo

机构信息

Department of Bioengineering, University of Washington, Seattle, WA 98195-2255, USA.

出版信息

Ann Biomed Eng. 2004 Sep;32(9):1300-13. doi: 10.1114/b:abme.0000039363.94089.08.

Abstract

Advances in computer hardware and the associated computer-intensive algorithms made feasible by these advances [like Markov chain Monte Carlo (MCMC) data analysis techniques] have made possible the application of hierarchical full Bayesian methods in analyzing pharmacokinetic and pharmacodynamic (PK-PD) data sets that are multivariate in nature. Pharmacokinetic data analysis in particular has been one area that has seized upon this technology to refine estimates of drug parameters from sparse data gathered in a large, highly variable population of patients. A drawback in this type of analysis is that it is difficult to quantitatively assess convergence of the Markov chains to a target distribution, and thus, it is sometimes difficult to assess the reliability of estimates gained from this procedure. Another complicating factor is that, although the application of MCMC methods to population PK-PD problems has been facilitated by new software designed for the PK-PD domain (specifically PKBUGS), experts in PK-PD may not have the necessary experience with MCMC methods to detect and understand problems with model convergence. The objective of this work is to provide an example of a set of diagnostics useful to investigators, by analyzing in detail three convergence criteria (namely the Raftery and Lewis, Geweke, and Heidelberger and Welch methods) on a simulated problem and with a rule of thumb of 10,000 chain elements in the Markov chain. We used two publicly available software packages to assess convergence of MCMC parameter estimates; the first performs Bayesian parameter estimation (PKBUGS/WinBUGS), and the second is focused on posterior analysis of estimates (BOA). The main message that seems to emerge is that accurately estimating confidence regions for the parameters of interest is more demanding than estimating the parameter means. Together, these tools provide numerical means by which an investigator can establish confidence in convergence and thus in the estimated parameters derived from hierarchical full Bayesian pharmacokinetic data analysis.

摘要

计算机硬件的进步以及这些进步所促成的相关计算机密集型算法(如马尔可夫链蒙特卡罗(MCMC)数据分析技术),使得分层全贝叶斯方法能够应用于本质上为多变量的药代动力学和药效学(PK-PD)数据集的分析。特别是药代动力学数据分析领域,已经利用这项技术从大量高度异质的患者群体中收集的稀疏数据来完善药物参数的估计。这类分析的一个缺点是,难以定量评估马尔可夫链向目标分布的收敛情况,因此有时难以评估从该过程获得的估计值的可靠性。另一个复杂因素是,尽管用于PK-PD领域的新软件(特别是PKBUGS)促进了MCMC方法在群体PK-PD问题中的应用,但PK-PD领域的专家可能没有必要的MCMC方法经验来检测和理解模型收敛问题。这项工作的目的是通过详细分析模拟问题上的三个收敛标准(即拉夫蒂和刘易斯、盖韦克以及海德伯格和韦尔奇方法),并采用马尔可夫链中10,000个链元素的经验法则,为研究人员提供一组有用诊断方法的示例。我们使用了两个公开可用的软件包来评估MCMC参数估计的收敛情况;第一个执行贝叶斯参数估计(PKBUGS/WinBUGS),第二个专注于估计值的后验分析(BOA)。似乎出现的主要信息是,准确估计感兴趣参数的置信区间比估计参数均值要求更高。总之,这些工具提供了数值方法,研究人员可以通过这些方法确定对收敛情况的信心,进而确定从分层全贝叶斯药代动力学数据分析得出的估计参数的信心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验