Suppr超能文献

游离L11的结构以及L11在游离状态、L11-rRNA(58个核苷酸)二元复合物和L11-rRNA(58个核苷酸)-硫链丝菌素三元复合物中的功能动力学。

The structure of free L11 and functional dynamics of L11 in free, L11-rRNA(58 nt) binary and L11-rRNA(58 nt)-thiostrepton ternary complexes.

作者信息

Lee Donghan, Walsh Joseph D, Yu Ping, Markus Michelle A, Choli-Papadopoulou Theodora, Schwieters Charles D, Krueger Susan, Draper David E, Wang Yun-Xing

机构信息

Protein Nucleic Acid Interaction Section, Structural Biophysics Laboratory, NCI-Frederick, NIH, Frederick, MD 21702, USA.

出版信息

J Mol Biol. 2007 Apr 6;367(4):1007-22. doi: 10.1016/j.jmb.2007.01.013. Epub 2007 Jan 10.

Abstract

The L11 binding site is one of the most important functional sites in the ribosome. The N-terminal domain of L11 has been implicated as a "reversible switch" in facilitating the coordinated movements associated with EF-G-driven GTP hydrolysis. The reversible switch mechanism has been hypothesized to require conformational flexibility involving re-orientation and re-positioning of the two L11 domains, and warrants a close examination of the structure and dynamics of L11. Here we report the solution structure of free L11, and relaxation studies of free L11, L11 complexed to its 58 nt RNA recognition site, and L11 in a ternary complex with the RNA and thiostrepton antibiotic. The binding site of thiostrepton on L11 was also defined by analysis of structural and dynamics data and chemical shift mapping. The conclusions of this work are as follows: first, the binding of L11 to RNA leads to sizable conformation changes in the regions flanking the linker and in the hinge area that links a beta-sheet and a 3(10)-helix-turn-helix element in the N terminus. Concurrently, the change in the relative orientation may lead to re-positioning of the N terminus, as implied by a decrease of radius of gyration from 18.5 A to 16.2 A. Second, the regions, which undergo large conformation changes, exhibit motions on milliseconds-microseconds or nanoseconds-picoseconds time scales. Third, binding of thiostrepton results in more rigid conformations near the linker (Thr71) and near its putative binding site (Leu12). Lastly, conformational changes in the putative thiostrepton binding site are implicated by the re-emergence of cross-correlation peaks in the spectrum of the ternary complex, which were missing in that of the binary complex. Our combined analysis of both the chemical shift perturbation and dynamics data clearly indicates that thiostrepton binds to a pocket involving residues in the 3(10)-helix in L11.

摘要

L11结合位点是核糖体中最重要的功能位点之一。L11的N端结构域被认为是一个“可逆开关”,有助于与EF-G驱动的GTP水解相关的协同运动。据推测,可逆开关机制需要构象灵活性,涉及两个L11结构域的重新定向和重新定位,因此有必要对L11的结构和动力学进行仔细研究。在此,我们报告了游离L11的溶液结构,以及游离L11、与58 nt RNA识别位点复合的L11以及与RNA和硫链丝菌素抗生素形成的三元复合物中L11的弛豫研究。通过对结构和动力学数据以及化学位移图谱的分析,还确定了硫链丝菌素在L11上的结合位点。这项工作的结论如下:第一,L11与RNA的结合导致连接区两侧以及连接N端β折叠和3(10)-螺旋-转角-螺旋元件的铰链区发生相当大的构象变化。同时,相对取向的变化可能导致N端重新定位,回转半径从18.5 Å减小到16.2 Å就暗示了这一点。第二,发生大构象变化的区域在毫秒-微秒或纳秒-皮秒时间尺度上表现出运动。第三,硫链丝菌素的结合导致连接区(Thr71)附近和其假定结合位点(Leu12)附近的构象更加刚性。最后,三元复合物光谱中重新出现了二元复合物光谱中缺失的交叉相关峰,这暗示了假定的硫链丝菌素结合位点的构象变化。我们对化学位移扰动和动力学数据的综合分析清楚地表明,硫链丝菌素结合到一个涉及L11中3(10)-螺旋中残基的口袋中。

相似文献

2
L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy.
Nucleic Acids Res. 2007;35(2):441-54. doi: 10.1093/nar/gkl1066. Epub 2006 Dec 14.
3
Influence of thiostrepton binding on the ribosomal GTPase associated region characterized by molecular dynamics simulation.
Bioorg Med Chem. 2012 Dec 15;20(24):7194-205. doi: 10.1016/j.bmc.2012.09.025. Epub 2012 Sep 22.
4
Thiostrepton-resistant mutants of Thermus thermophilus.
Nucleic Acids Res. 2004 Jun 15;32(10):3220-7. doi: 10.1093/nar/gkh644. Print 2004.
5
Interactions of the N-terminal domain of ribosomal protein L11 with thiostrepton and rRNA.
J Biol Chem. 2005 Aug 19;280(33):29956-63. doi: 10.1074/jbc.M504182200. Epub 2005 Jun 22.
7
Interaction of thiostrepton and elongation factor-G with the ribosomal protein L11-binding domain.
J Biol Chem. 2005 Jan 28;280(4):2934-43. doi: 10.1074/jbc.M407008200. Epub 2004 Oct 18.
10
A detailed view of a ribosomal active site: the structure of the L11-RNA complex.
Cell. 1999 May 14;97(4):491-502. doi: 10.1016/s0092-8674(00)80759-x.

引用本文的文献

1
Biomotors, viral assembly, and RNA nanobiotechnology: Current achievements and future directions.
Comput Struct Biotechnol J. 2022 Nov 11;20:6120-6137. doi: 10.1016/j.csbj.2022.11.007. eCollection 2022.
2
The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development.
Adv Drug Deliv Rev. 2022 Jul;186:114316. doi: 10.1016/j.addr.2022.114316. Epub 2022 May 5.
3
Ribosomal Protein L11 Selectively Stabilizes a Tertiary Structure of the GTPase Center rRNA Domain.
J Mol Biol. 2020 Feb 14;432(4):991-1007. doi: 10.1016/j.jmb.2019.12.010. Epub 2019 Dec 24.
4
YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function.
Chem Rev. 2017 Apr 26;117(8):5389-5456. doi: 10.1021/acs.chemrev.6b00623. Epub 2017 Mar 3.
5
The extended loops of ribosomal proteins uL4 and uL22 of Escherichia coli contribute to ribosome assembly and protein translation.
Nucleic Acids Res. 2016 Jul 8;44(12):5798-810. doi: 10.1093/nar/gkw493. Epub 2016 Jun 1.
6
Structural basis and dynamics of multidrug recognition in a minimal bacterial multidrug resistance system.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5498-507. doi: 10.1073/pnas.1412070111. Epub 2014 Dec 8.
7
Structure-activity relationships of thiostrepton derivatives: implications for rational drug design.
J Comput Aided Mol Des. 2014 Dec;28(12):1205-15. doi: 10.1007/s10822-014-9797-0. Epub 2014 Oct 4.
8
Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain.
J Mol Model. 2013 Feb;19(2):539-49. doi: 10.1007/s00894-012-1563-4. Epub 2012 Sep 8.
9
Evidence for a thermodynamically distinct Mg2+ ion associated with formation of an RNA tertiary structure.
J Am Chem Soc. 2011 Aug 31;133(34):13397-405. doi: 10.1021/ja2020923. Epub 2011 Aug 4.
10
A conformational switch in the scaffolding protein NHERF1 controls autoinhibition and complex formation.
J Biol Chem. 2010 Mar 26;285(13):9981-9994. doi: 10.1074/jbc.M109.074005. Epub 2009 Dec 30.

本文引用的文献

2
EF-G-dependent GTPase on the ribosome. conformational change and fusidic acid inhibition.
Biochemistry. 2006 Feb 28;45(8):2504-14. doi: 10.1021/bi0516677.
5
Effective rotational correlation times of proteins from NMR relaxation interference.
J Magn Reson. 2006 Jan;178(1):72-6. doi: 10.1016/j.jmr.2005.08.014. Epub 2005 Sep 26.
6
Weak alignment NMR: a hawk-eyed view of biomolecular structure.
Curr Opin Struct Biol. 2005 Oct;15(5):563-70. doi: 10.1016/j.sbi.2005.08.006.
8
Interactions of the N-terminal domain of ribosomal protein L11 with thiostrepton and rRNA.
J Biol Chem. 2005 Aug 19;280(33):29956-63. doi: 10.1074/jbc.M504182200. Epub 2005 Jun 22.
9
The ribosome revealed.
Trends Biochem Sci. 2005 Jun;30(6):281-3. doi: 10.1016/j.tibs.2005.04.006.
10
Mapping chemical exchange in proteins with MW > 50 kD.
J Am Chem Soc. 2003 Jul 30;125(30):8968-9. doi: 10.1021/ja035139z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验