Department of Biophysics, Johns Hopkins University Baltimore, Maryland 21218, United States.
J Am Chem Soc. 2011 Aug 31;133(34):13397-405. doi: 10.1021/ja2020923. Epub 2011 Aug 4.
A folding strategy adopted by some RNAs is to chelate cations in pockets or cavities, where the ions neutralize charge from solvent-inaccessible phosphate. Although such buried Mg(2+)-RNA chelates could be responsible for a significant fraction of the Mg(2+)-dependent stabilization free energy of some RNA tertiary structures, direct measurements have not been feasible because of the difficulty of finding conditions under which the free energy of Mg(2+) chelation is uncoupled from RNA folding and from unfavorable interactions with Mg(2+) ions in other environments. In a 58mer rRNA fragment, we have used a high-affinity thermophilic ribosomal protein to trap the RNA in a structure nearly identical to native; Mg(2+)- and protein-stabilized structures differ in the solvent exposure of a single nucleotide located at the chelation site. Under these conditions, titration of a high affinity chelation site takes place in a micromolar range of Mg(2+) concentration, and is partially resolved from the accumulation of Mg(2+) in the ion atmosphere. From these experiments, we estimate the total and site-specific Mg(2+)-RNA interaction free energies over the range of accessed Mg(2+) concentrations. At 0.1 mM Mg(2+) and 60 mM K(+), specific site binding contributes ∼-3 kcal/mol of the total Mg(2+) interaction free energy of ∼-13 kcal/mol from all sources; at higher Mg(2+) concentrations the site-binding contribution becomes a smaller proportion of the total (-4.5 vs -33 kcal/mol). Under approximately physiological ionic conditions, the specific binding site will be saturated but will provide only a fraction of the total free energy of Mg(2+)-RNA interactions.
一些 RNA 采用的折叠策略是螯合口袋或腔体内的阳离子,其中离子中和来自溶剂不可及的磷酸的电荷。虽然这种埋藏的 Mg(2+)-RNA 螯合物可能负责一些 RNA 三级结构中 Mg(2+)依赖性稳定自由能的显著部分,但由于难以找到条件,使 Mg(2+)螯合的自由能与 RNA 折叠和与其他环境中 Mg(2+)离子的不利相互作用解耦,因此直接测量一直不可行。在一个 58mer rRNA 片段中,我们使用高亲和力嗜热核糖体蛋白将 RNA 捕获在与天然结构几乎相同的结构中;Mg(2+)和蛋白质稳定的结构在位于螯合位点的单个核苷酸的溶剂暴露方面有所不同。在这些条件下,高亲和力螯合位点的滴定发生在微摩尔范围的 Mg(2+)浓度下,并且部分与离子气氛中 Mg(2+)的积累分开。从这些实验中,我们在可访问的 Mg(2+)浓度范围内估计总和特定位点的 Mg(2+)-RNA 相互作用自由能。在 0.1 mM Mg(2+)和 60 mM K(+)下,特定位点结合对总 Mg(2+)相互作用自由能的贡献约为-3 kcal/mol,约为 13 kcal/mol 的所有来源;在较高的 Mg(2+)浓度下,位点结合的贡献成为总自由能的较小比例(-4.5 与-33 kcal/mol)。在近似生理离子条件下,特定结合位点将饱和,但仅提供 Mg(2+)-RNA 相互作用总自由能的一部分。