Suppr超能文献

相似文献

1
Evidence for a thermodynamically distinct Mg2+ ion associated with formation of an RNA tertiary structure.
J Am Chem Soc. 2011 Aug 31;133(34):13397-405. doi: 10.1021/ja2020923. Epub 2011 Aug 4.
3
Mg2+-RNA interaction free energies and their relationship to the folding of RNA tertiary structures.
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14003-8. doi: 10.1073/pnas.0606409103. Epub 2006 Sep 11.
4
Divalent ion competition reveals reorganization of an RNA ion atmosphere upon folding.
Nucleic Acids Res. 2017 May 5;45(8):4733-4742. doi: 10.1093/nar/gkw1327.
5
Affinities and selectivities of divalent cation binding sites within an RNA tertiary structure.
J Mol Biol. 1997 Nov 14;273(5):1020-31. doi: 10.1006/jmbi.1997.1383.
6
Tertiary structure of an RNA pseudoknot is stabilized by "diffuse" Mg2+ ions.
Biochemistry. 2007 Mar 20;46(11):2973-83. doi: 10.1021/bi0616753. Epub 2007 Feb 23.
7
Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
J Mol Biol. 1999 Jun 25;289(5):1267-82. doi: 10.1006/jmbi.1999.2841.
8
Effects of Mg2+ on the free energy landscape for folding a purine riboswitch RNA.
Biochemistry. 2011 Apr 12;50(14):2790-9. doi: 10.1021/bi101948k. Epub 2011 Mar 21.
9
Stabilization of RNA structure by Mg ions. Specific and non-specific effects.
J Mol Biol. 1994 Apr 15;237(5):577-87. doi: 10.1006/jmbi.1994.1256.
10
A compact RNA tertiary structure contains a buried backbone-K+ complex.
J Mol Biol. 2002 May 10;318(4):963-73. doi: 10.1016/S0022-2836(02)00147-X.

引用本文的文献

2
Upconversion luminescence-based aptasensor for the detection of thyroid-stimulating hormone in serum.
Mikrochim Acta. 2022 Apr 7;189(5):179. doi: 10.1007/s00604-022-05279-5.
3
Chelated Magnesium Logic Gate Regulates Riboswitch Pseudoknot Formation.
J Phys Chem B. 2021 Jun 24;125(24):6479-6490. doi: 10.1021/acs.jpcb.1c02467. Epub 2021 Jun 9.
4
Ribosomal Protein L11 Selectively Stabilizes a Tertiary Structure of the GTPase Center rRNA Domain.
J Mol Biol. 2020 Feb 14;432(4):991-1007. doi: 10.1016/j.jmb.2019.12.010. Epub 2019 Dec 24.
5
Predicting Monovalent Ion Correlation Effects in Nucleic Acids.
ACS Omega. 2019 Aug 5;4(8):13435-13446. doi: 10.1021/acsomega.9b01689. eCollection 2019 Aug 20.
6
Predicting RNA-Metal Ion Binding with Ion Dehydration Effects.
Biophys J. 2019 Jan 22;116(2):184-195. doi: 10.1016/j.bpj.2018.12.006. Epub 2018 Dec 13.
8
Effects of Preferential Counterion Interactions on the Specificity of RNA Folding.
J Phys Chem Lett. 2018 Oct 4;9(19):5726-5732. doi: 10.1021/acs.jpclett.8b02086. Epub 2018 Sep 18.
9
Predicting Ion Effects in an RNA Conformational Equilibrium.
J Phys Chem B. 2017 Aug 31;121(34):8026-8036. doi: 10.1021/acs.jpcb.7b03873. Epub 2017 Aug 21.
10
The 2D Structure of the Preedited RPS12 mRNA Is Not Affected by Macromolecular Crowding.
J Nucleic Acids. 2017;2017:6067345. doi: 10.1155/2017/6067345. Epub 2017 Jun 18.

本文引用的文献

1
Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch.
Mol Cell. 2010 Dec 10;40(5):774-86. doi: 10.1016/j.molcel.2010.11.026.
4
Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs.
J Mol Biol. 2009 Sep 25;392(3):723-35. doi: 10.1016/j.jmb.2009.07.033. Epub 2009 Jul 17.
5
Direct quantitation of Mg2+-RNA interactions by use of a fluorescent dye.
Methods Enzymol. 2009;455:71-94. doi: 10.1016/S0076-6879(08)04203-1.
6
RNA folding: thermodynamic and molecular descriptions of the roles of ions.
Biophys J. 2008 Dec 15;95(12):5489-95. doi: 10.1529/biophysj.108.131813. Epub 2008 Oct 3.
7
Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism.
Nat Struct Mol Biol. 2008 Oct;15(10):1076-83. doi: 10.1038/nsmb.1494. Epub 2008 Sep 21.
8
Structure and mechanism of a metal-sensing regulatory RNA.
Cell. 2007 Sep 7;130(5):878-92. doi: 10.1016/j.cell.2007.06.051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验