Suppr超能文献

利用丙酮酸脱氢酶复合体缺陷型谷氨酸棒杆菌生产L-缬氨酸。

L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum.

作者信息

Blombach Bastian, Schreiner Mark E, Holátko Jirí, Bartek Tobias, Oldiges Marco, Eikmanns Bernhard J

机构信息

Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany.

出版信息

Appl Environ Microbiol. 2007 Apr;73(7):2079-84. doi: 10.1128/AEM.02826-06. Epub 2007 Feb 9.

Abstract

Corynebacterium glutamicum was engineered for the production of L-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum DeltaaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, L-alanine, and L-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum DeltaaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and L-alanine towards L-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum DeltaaceE(pJC4ilvBNCE) produced up to 210 mM L-valine with a volumetric productivity of 10.0 mM h(-1) (1.17 g l(-1) h(-1)) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose.

摘要

通过缺失编码丙酮酸脱氢酶复合体E1p酶的aceE基因,并额外过表达编码L-缬氨酸生物合成酶乙酰羟酸合酶、异构还原酶和转氨酶B的ilvBNCE基因,对谷氨酸棒杆菌进行工程改造,使其能够从葡萄糖生产L-缬氨酸。在细胞不生长的情况下,谷氨酸棒杆菌ΔaceE显示出相对较高的细胞内丙酮酸浓度(25.9 mM),并以葡萄糖作为唯一碳源产生大量的丙酮酸、L-丙氨酸和L-缬氨酸。未形成乳酸或乙酸。在谷氨酸棒杆菌ΔaceE中,ilvBNCE的质粒结合过表达导致细胞内丙酮酸浓度降低约10倍(2.3 mM),细胞外产物模式从丙酮酸和L-丙氨酸向L-缬氨酸转变。在高细胞密度和过量葡萄糖的补料分批发酵中,谷氨酸棒杆菌ΔaceE(pJC4ilvBNCE)产生高达210 mM的L-缬氨酸,体积产率为10.0 mM h(-1)(1.17 g l(-1) h(-1)),最大产率约为每摩尔(每克0.4克)葡萄糖0.6摩尔。

相似文献

1
L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum.
Appl Environ Microbiol. 2007 Apr;73(7):2079-84. doi: 10.1128/AEM.02826-06. Epub 2007 Feb 9.
3
Corynebacterium glutamicum tailored for high-yield L-valine production.
Appl Microbiol Biotechnol. 2008 Jun;79(3):471-9. doi: 10.1007/s00253-008-1444-z. Epub 2008 Apr 1.
4
Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2007 Sep;76(3):615-23. doi: 10.1007/s00253-007-0904-1. Epub 2007 Mar 2.
5
Engineering Corynebacterium glutamicum for the production of pyruvate.
Appl Microbiol Biotechnol. 2012 Apr;94(2):449-59. doi: 10.1007/s00253-011-3843-9. Epub 2012 Jan 8.
7
Analysing overexpression of L-valine biosynthesis genes in pyruvate-dehydrogenase-deficient Corynebacterium glutamicum.
J Ind Microbiol Biotechnol. 2010 Mar;37(3):263-70. doi: 10.1007/s10295-009-0669-x. Epub 2009 Dec 11.
8
Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum.
Appl Environ Microbiol. 2009 Jan;75(2):419-27. doi: 10.1128/AEM.01844-08. Epub 2008 Dec 1.
9
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production.
Appl Environ Microbiol. 2010 Dec;76(24):8053-61. doi: 10.1128/AEM.01710-10. Epub 2010 Oct 8.
10
Enhancing (L)-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum.
Appl Biochem Biotechnol. 2013 Sep;171(1):20-30. doi: 10.1007/s12010-013-0321-0. Epub 2013 Jun 30.

引用本文的文献

1
Low-biomass pyruvate production with engineered Vibrio natriegens is accompanied by parapyruvate formation.
Microb Cell Fact. 2025 Mar 28;24(1):73. doi: 10.1186/s12934-025-02693-1.
2
Rapid exometabolome footprinting combined with multivariate statistics: A powerful tool for bioprocess optimization.
Eng Life Sci. 2024 Mar 5;25(2):2300222. doi: 10.1002/elsc.202300222. eCollection 2025 Feb.
4
System metabolic engineering of W for the production of 2-ketoisovalerate using unconventional feedstock.
Front Bioeng Biotechnol. 2023 Apr 20;11:1176445. doi: 10.3389/fbioe.2023.1176445. eCollection 2023.
5
New Insights into the Physiology of the Propionate Producers and (Formerly and ).
Microorganisms. 2023 Mar 7;11(3):685. doi: 10.3390/microorganisms11030685.
6
Metabolic engineering of Corynebacterium glutamicum for acetate-based itaconic acid production.
Biotechnol Biofuels Bioprod. 2022 Dec 14;15(1):139. doi: 10.1186/s13068-022-02238-3.
7
Metabolic engineering of Corynebacterium glutamicum for producing branched chain amino acids.
Microb Cell Fact. 2021 Dec 24;20(1):230. doi: 10.1186/s12934-021-01721-0.
8
Exploring the Potential of to Produce the Compatible Solute Mannosylglycerate.
Front Bioeng Biotechnol. 2021 Sep 21;9:748155. doi: 10.3389/fbioe.2021.748155. eCollection 2021.
9
L-valine production in Corynebacterium glutamicum based on systematic metabolic engineering: progress and prospects.
Amino Acids. 2021 Sep;53(9):1301-1312. doi: 10.1007/s00726-021-03066-9. Epub 2021 Aug 16.
10
A Timed Off-Switch for Dynamic Control of Gene Expression in .
Front Bioeng Biotechnol. 2021 Jul 29;9:704681. doi: 10.3389/fbioe.2021.704681. eCollection 2021.

本文引用的文献

1
Pyruvate carboxylase as an anaplerotic enzyme in .
Microbiology (Reading). 1997 Apr;143(4):1095-1103. doi: 10.1099/00221287-143-4-1095.
4
Biotechnological production of amino acids and derivatives: current status and prospects.
Appl Microbiol Biotechnol. 2005 Nov;69(1):1-8. doi: 10.1007/s00253-005-0155-y. Epub 2005 Oct 20.
8
Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum.
Appl Environ Microbiol. 2005 Jan;71(1):207-13. doi: 10.1128/AEM.71.1.207-213.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验