Hädrich Maurice, Scheuchenegger Clarissa, Vital Sören-Tobias, Gunkel Christoph, Müller Susanne, Hoff Josef, Borger Jennifer, Glawischnig Erich, Thoma Felix, Blombach Bastian
Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany.
Microb Cell Fact. 2025 Mar 28;24(1):73. doi: 10.1186/s12934-025-02693-1.
Pyruvate is a precursor for various compounds in the chemical, drug, and food industries and is therefore an attractive target molecule for microbial production processes. The fast-growing bacterium Vibrio natriegens excels with its specific substrate uptake rate as an unconventional chassis for industrial biotechnology. Here, we aim to exploit the traits of V. natriegens for pyruvate production in fermentations with low biomass concentrations.
We inactivated the pyruvate dehydrogenase complex in V. natriegens Δvnp12, which harbors deletions of the prophage regions vnp12. The resulting strain V. natriegens Δvnp12 ΔaceE was unable to grow in minimal medium with glucose unless supplemented with acetate. In shaking flasks, the strain showed a growth rate of 1.16 ± 0.03 h and produced 4.0 ± 0.3 g L within 5 h. We optimized the parameters in an aerobic fermentation process and applied a constant maintenance feed of 0.24 g h which resulted in a maximal biomass concentration of only 6.6 ± 0.4 g L and yielded highly active resting cells with a glucose uptake rate (q) of 3.5 ± 0.2 g g h. V. natriegens Δvnp12 ΔaceE produced 41.0 ± 1.8 g L with a volumetric productivity of 4.1 ± 0.2 g L h. Carbon balancing disclosed a gap of 30%, which we identified partly as parapyruvate. Deletion of ligK encoding the HMG/CHA aldolase in V. natriegens Δvnp12 ΔaceE did not impact biomass formation but plasmid-based overexpression of ligK negatively affected growth and led to a 3-fold higher parapyruvate concentration in the culture broth. Notably, we also identified parapyruvate in supernatants of a pyruvate-producing Corynebacterium glutamicum strain. Cell-free bioreactor experiments mimicking the biological process also resulted in parapyruvate formation, pointing to a chemical reaction contributing to its synthesis.
We engineered metabolically highly active resting cells of V. natriegens producing pyruvate with high productivity at a low biomass concentration. However, we also found that pyruvate production is accompanied by parapyruvate formation in V. natriegens as well as in a pyruvate producing C. glutamicum strain. Parapyruvate formation seems to be a result of chemical pyruvate conversion and might be supported biochemically by an aldolase reaction.
丙酮酸是化学、制药和食品工业中各种化合物的前体,因此是微生物生产过程中一个有吸引力的目标分子。快速生长的纳氏弧菌以其特定的底物摄取速率成为工业生物技术中一种非常规的底盘细胞。在此,我们旨在利用纳氏弧菌的特性,在低生物量浓度的发酵中生产丙酮酸。
我们使纳氏弧菌Δvnp12中的丙酮酸脱氢酶复合体失活,该菌株的原噬菌体区域vnp12存在缺失。所得菌株纳氏弧菌Δvnp12ΔaceE在含有葡萄糖的基本培养基中无法生长,除非添加乙酸盐。在摇瓶中,该菌株的生长速率为1.16±0.03 h⁻¹,在5小时内产生4.0±0.3 g L⁻¹。我们在好氧发酵过程中优化了参数,并采用0.24 g h⁻¹的恒定维持补料,这导致最大生物量浓度仅为6.6±0.4 g L⁻¹,并产生了具有3.5±0.2 g g⁻¹ h⁻¹葡萄糖摄取速率(q)的高活性静息细胞。纳氏弧菌Δvnp12ΔaceE产生了41.0±1.8 g L⁻¹,体积产率为4.1±0.2 g L⁻¹ h⁻¹。碳平衡显示存在30%的差距,我们部分确定为副丙酮酸。在纳氏弧菌Δvnp12ΔaceE中删除编码HMG/CHA醛缩酶的ligK对生物量形成没有影响,但基于质粒的ligK过表达对生长有负面影响,并导致培养液中副丙酮酸浓度提高3倍。值得注意的是,我们还在产丙酮酸的谷氨酸棒杆菌菌株的上清液中鉴定出了副丙酮酸。模拟生物过程的无细胞生物反应器实验也导致了副丙酮酸的形成,这表明存在一种导致其合成的化学反应。
我们构建了代谢高度活跃的纳氏弧菌静息细胞,能够在低生物量浓度下高效生产丙酮酸。然而,我们还发现,在纳氏弧菌以及产丙酮酸的谷氨酸棒杆菌菌株中,丙酮酸生产伴随着副丙酮酸的形成。副丙酮酸的形成似乎是丙酮酸化学转化的结果,可能在生物化学上由醛缩酶反应支持。