Ricchelli Fernanda, Fusi Paola, Tortora Paolo, Valtorta Marco, Riva Matteo, Tognon Giuseppe, Chieregato Katia, Bolognin Silvia, Zatta Paolo
C.N.R. Institute of Biomedical Technologies, Metalloproteins Unit, at the Department of Biology, University of Padova, Viale G. Colombo 3-35121 Padova, Italy.
Int J Biochem Cell Biol. 2007;39(5):966-77. doi: 10.1016/j.biocel.2007.01.012. Epub 2007 Jan 20.
Ataxin-3 (AT3), a protein that causes spinocerebellar ataxia type 3, has a C-terminus containing a polyglutamine stretch, the length of which can be expanded in its pathological variants. Here, we report on the role of Cu(2+), Mn(2+), Zn(2+) and Al(3+) in the induction of defective protein structures and subsequent aggregation/fibrillogenesis of three different non-pathological forms of AT3, i.e. murine (Q6), human non-expanded (Q26) and human moderately expanded (Q36). AT3 variants showed an intrinsic propensity to misfolding/aggregation; on the other hand, Zn(2+) and Al(3+) strongly stimulated the amplitude and kinetics of these conformational conversions. While both metal ions induced a time-dependent aggregation into amyloid-like fibrillar forms, only small oligomers and/or short protofibrillar species were detected for AT3s alone. The rate and extent of the metal-induced aggregation/fibrillogenesis processes increased with the size of the polyglutamine stretch. Mn(2+) and Cu(2+) had no effect on (Q6) or actually prevented (Q26 and Q36) the AT3 structural transitions. The observation that Zn(2+) and Al(3+) promote AT3 fibrillogenesis is consistent with similar results found for other amyloidogenic molecules, such as beta-amyloid and prion proteins. Plausibly, these metal ions are a major common factor/cofactor in the etiopathogenesis of neurodegenerative diseases. Studies of liposomes as membrane models showed dramatic changes in the structural properties of the lipid bilayer in the presence of AT3, which were enhanced after supplementing the protein with Zn(2+) and Al(3+). This suggests that cell membranes could be a potential primary target in the ataxin-3 pathogenesis and metals could be a biological factor capable of modulating their interaction with AT3.
ataxin-3(AT3)是一种导致3型脊髓小脑共济失调的蛋白质,其C端含有一段聚谷氨酰胺延伸序列,在其病理变体中该序列长度会延长。在此,我们报告铜离子(Cu(2+))、锰离子(Mn(2+))、锌离子(Zn(2+))和铝离子(Al(3+))在诱导三种不同非病理形式的AT3(即小鼠型(Q6)、人类非扩增型(Q26)和人类中度扩增型(Q36))出现有缺陷的蛋白质结构以及随后的聚集/原纤维形成中的作用。AT3变体表现出内在的错误折叠/聚集倾向;另一方面,锌离子(Zn(2+))和铝离子(Al(3+))强烈刺激了这些构象转变的幅度和动力学。虽然两种金属离子都诱导了随时间的聚集形成淀粉样纤维状形式,但单独的AT3仅检测到小寡聚体和/或短原纤维物种。金属诱导的聚集/原纤维形成过程的速率和程度随着聚谷氨酰胺延伸序列的长度增加而增加。锰离子(Mn(2+))和铜离子(Cu(2+))对(Q6)无影响,实际上还阻止了(Q26和Q36)AT3的结构转变。锌离子(Zn(2+))和铝离子(Al(3+))促进AT3原纤维形成的观察结果与其他淀粉样生成分子(如β-淀粉样蛋白和朊病毒蛋白)的类似结果一致。推测这些金属离子是神经退行性疾病病因学中的一个主要共同因素/辅助因子。以脂质体作为膜模型的研究表明存在AT3时脂质双层的结构特性发生了显著变化,在用锌离子(Zn(2+))和铝离子(Al(3+))补充蛋白质后这种变化增强。这表明细胞膜可能是ataxin-3发病机制中的一个潜在主要靶点,而金属可能是一种能够调节它们与AT3相互作用的生物学因素。