Simard J Marc, Kent Thomas A, Chen Mingkui, Tarasov Kirill V, Gerzanich Volodymyr
Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.
Lancet Neurol. 2007 Mar;6(3):258-68. doi: 10.1016/S1474-4422(07)70055-8.
Focal cerebral ischaemia and post-ischaemic reperfusion cause cerebral capillary dysfunction, resulting in oedema formation and haemorrhagic conversion. There are substantial gaps in understanding the pathophysiology, especially regarding early molecular participants. Here, we review physiological and molecular mechanisms involved. We reaffirm the central role of Starling's principle, which states that oedema formation is determined by the driving force and the capillary "permeability pore". We emphasise that the movement of fluids is largely driven without new expenditure of energy by the ischaemic brain. We organise the progressive changes in osmotic and hydrostatic conductivity of abnormal capillaries into three phases: formation of ionic oedema, formation of vasogenic oedema, and catastrophic failure with haemorrhagic conversion. We suggest a new theory suggesting that ischaemia-induced capillary dysfunction can be attributed to de novo synthesis of a specific ensemble of proteins that determine osmotic and hydraulic conductivity in Starling's equation, and whose expression is driven by a distinct transcriptional program.
局灶性脑缺血和缺血后再灌注会导致脑毛细血管功能障碍,进而形成水肿并发生出血性转化。在理解其病理生理学方面存在很大差距,尤其是关于早期分子参与者。在此,我们综述所涉及的生理和分子机制。我们重申了斯塔林原理的核心作用,该原理指出水肿的形成由驱动力和毛细血管“渗透孔”决定。我们强调,液体的流动在很大程度上是由缺血性脑在无新能量消耗的情况下驱动的。我们将异常毛细血管的渗透压和流体静力传导率的渐进性变化分为三个阶段:离子性水肿的形成、血管源性水肿的形成以及伴有出血性转化的灾难性衰竭。我们提出一种新理论,认为缺血诱导的毛细血管功能障碍可归因于特定蛋白质组合的从头合成,这些蛋白质决定了斯塔林方程中的渗透压和水力传导率,且其表达由一个独特的转录程序驱动。