Suppr超能文献

1型强直性肌营养不良患者神经肌肉接头处的核糖核焦点。

Ribonuclear foci at the neuromuscular junction in myotonic dystrophy type 1.

作者信息

Wheeler T M, Krym M C, Thornton C A

机构信息

Department of Neurology, University of Rochester, 601 Elmwood Avenue, Box 673, Rochester, NY 14642, USA.

出版信息

Neuromuscul Disord. 2007 Mar;17(3):242-7. doi: 10.1016/j.nmd.2006.12.015. Epub 2007 Feb 15.

Abstract

In myotonic dystrophy type 1 (DM1) the muscle fibers express RNA containing an expanded CUG repeat (CUG(exp)). The CUG(exp) RNA is retained in the nucleus, forming ribonuclear foci. Splicing factors in the muscleblind (MBNL) family are sequestered in ribonuclear foci, resulting in abnormal regulation of alternative splicing. In extrajunctional nuclei, these effects on splicing regulation lead to reduced chloride conductance and altered insulin receptor signaling. Here we show that CUG(exp) RNA is also expressed in subsynaptic nuclei of muscle fibers and in motor neurons in DM1, causing sequestration of MBNL1 protein in both locations. In a transgenic mouse model, expression of CUG(exp) RNA at high levels in extrajunctional nuclei replicates many features of DM1, but the toxic RNA is poorly expressed in subsynaptic nuclei and the mice fail to develop denervation-like features of DM1 myopathology. Our findings indicate that subsynaptic nuclei and motor neurons are at risk for DM1-induced spliceopathy, which may affect function or stability of the neuromuscular junction.

摘要

在1型强直性肌营养不良(DM1)中,肌纤维表达含有扩展的CUG重复序列(CUG(exp))的RNA。CUG(exp) RNA滞留于细胞核中,形成核糖核蛋白病灶。肌肉盲(MBNL)家族中的剪接因子被隔离在核糖核蛋白病灶中,导致可变剪接的调控异常。在结外核中,这些对剪接调控的影响导致氯离子电导降低和胰岛素受体信号改变。我们在此表明,CUG(exp) RNA在DM1的肌纤维突触下核和运动神经元中也有表达,导致MBNL1蛋白在这两个部位被隔离。在一个转基因小鼠模型中,结外核中高水平表达的CUG(exp) RNA复制了DM1的许多特征,但有毒RNA在突触下核中表达不佳,且小鼠未能出现DM1肌病的去神经样特征。我们的研究结果表明,突触下核和运动神经元有发生DM1诱导的剪接病的风险,这可能会影响神经肌肉接头的功能或稳定性。

相似文献

1
Ribonuclear foci at the neuromuscular junction in myotonic dystrophy type 1.
Neuromuscul Disord. 2007 Mar;17(3):242-7. doi: 10.1016/j.nmd.2006.12.015. Epub 2007 Feb 15.
2
Cytoplasmic CUG RNA foci are insufficient to elicit key DM1 features.
PLoS One. 2008;3(12):e3968. doi: 10.1371/journal.pone.0003968. Epub 2008 Dec 18.
3
Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy.
J Cell Sci. 2005 Jul 1;118(Pt 13):2923-33. doi: 10.1242/jcs.02404. Epub 2005 Jun 16.
4
RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy.
Mol Ther. 2013 Feb;21(2):380-7. doi: 10.1038/mt.2012.222. Epub 2012 Nov 27.
5
Muscleblind-like 1 knockout mice reveal novel splicing defects in the myotonic dystrophy brain.
PLoS One. 2012;7(3):e33218. doi: 10.1371/journal.pone.0033218. Epub 2012 Mar 13.
6
MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1.
Hum Mol Genet. 2006 Jul 1;15(13):2138-45. doi: 10.1093/hmg/ddl137. Epub 2006 May 24.
7
Expression levels of core spliceosomal proteins modulate the MBNL-mediated spliceopathy in DM1.
Hum Mol Genet. 2024 Nov 5;33(21):1873-1886. doi: 10.1093/hmg/ddae125.
10
Furamidine Rescues Myotonic Dystrophy Type I Associated Mis-Splicing through Multiple Mechanisms.
ACS Chem Biol. 2018 Sep 21;13(9):2708-2718. doi: 10.1021/acschembio.8b00646. Epub 2018 Aug 27.

引用本文的文献

1
Muscle-driven spinal cord histological and transcriptomic alterations in a myotonic dystrophy mouse model: insights into neuropathy.
Brain Commun. 2025 Aug 25;7(5):fcaf313. doi: 10.1093/braincomms/fcaf313. eCollection 2025.
2
Comparative Analysis of Splicing Alterations in Three Muscular Dystrophies.
Biomedicines. 2025 Mar 1;13(3):606. doi: 10.3390/biomedicines13030606.
4
6
MBNL-dependent impaired development within the neuromuscular system in myotonic dystrophy type 1.
Neuropathol Appl Neurobiol. 2023 Feb;49(1):e12876. doi: 10.1111/nan.12876.
7
Cell type-specific abnormalities of central nervous system in myotonic dystrophy type 1.
Brain Commun. 2022 Jun 10;4(3):fcac154. doi: 10.1093/braincomms/fcac154. eCollection 2022.
8
Neuromuscular Development and Disease: Learning From and Models.
Front Cell Dev Biol. 2021 Oct 27;9:764732. doi: 10.3389/fcell.2021.764732. eCollection 2021.
9
Fourier-Transform Infrared Spectroscopy as a Discriminatory Tool for Myotonic Dystrophy Type 1 Metabolism: A Pilot Study.
Int J Environ Res Public Health. 2021 Apr 6;18(7):3800. doi: 10.3390/ijerph18073800.
10
Metabolic Alterations in Myotonic Dystrophy Type 1 and Their Correlation with Lipin.
Int J Environ Res Public Health. 2021 Feb 12;18(4):1794. doi: 10.3390/ijerph18041794.

本文引用的文献

1
RNA-dominant diseases.
Hum Mol Genet. 2006 Oct 15;15 Spec No 2:R162-9. doi: 10.1093/hmg/ddl181.
2
Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy.
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11748-53. doi: 10.1073/pnas.0604970103. Epub 2006 Jul 24.
3
Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy.
Hum Mol Genet. 2006 Jul 1;15(13):2087-97. doi: 10.1093/hmg/ddl132. Epub 2006 May 22.
4
Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost.
Curr Opin Neurobiol. 2006 Feb;16(1):74-82. doi: 10.1016/j.conb.2005.12.003. Epub 2005 Dec 28.
5
RNA-dependent integrin alpha3 protein localization regulated by the Muscleblind-like protein MLP1.
Nat Cell Biol. 2005 Dec;7(12):1240-7. doi: 10.1038/ncb1335. Epub 2005 Nov 6.
6
Activity-dependent presynaptic regulation of quantal size at the mammalian neuromuscular junction in vivo.
J Neurosci. 2005 Jan 12;25(2):343-51. doi: 10.1523/JNEUROSCI.3252-04.2005.
7
Truncated ClC-1 mRNA in myotonic dystrophy exerts a dominant-negative effect on the Cl current.
Neurology. 2004 Dec 28;63(12):2371-5. doi: 10.1212/01.wnl.0000148482.40683.88.
10
Muscleblind proteins regulate alternative splicing.
EMBO J. 2004 Aug 4;23(15):3103-12. doi: 10.1038/sj.emboj.7600300. Epub 2004 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验