Gegelashvili Marina, Rodriguez-Kern Anna, Sung Luther, Shimamoto Keiko, Gegelashvili Georgi
BioSignal Technologies, Torrance, CA 90501, USA.
Neurochem Int. 2007 Jun;50(7-8):916-20. doi: 10.1016/j.neuint.2006.12.015. Epub 2007 Jan 14.
Na+-dependent uptake of excitatory neurotransmitter glutamate in astrocytes increases cell energy demands primarily due to the elevated ATP consumption by glutamine synthetase and Na+, K+-ATPase. The major pool of GLAST/EAAT1, the only glutamate transporter subtype expressed by human fetal astrocytes in undifferentiated cultures, was restricted to the cytoplasmic compartment. Elevated glutamate concentrations (up to 50 microM) stimulated both glutamate uptake and Na+, K+-ATPase activity and concomitantly increased cell surface expression of GLAST and FXYD2/gamma subunit of Na+, K+-ATPase. Intracellular accumulation of glutamate or its metabolites per se was not responsible for these changes since metabolically inert transport substrate, D-aspartate, exerted the same effect. Nanomolar concentrations of TFB-TBOA, a novel nontransportable inhibitor of glutamate carriers, almost completely reversed the action of glutamate or D-aspartate. In the same conditions (i.e. block of glutamate transport) monensin, a potent Na+ ionophore, had no significant effect neither on the activation of Na+, K+-ATPase nor on the cell surface expression of gamma subunit or GLAST. In order to elucidate the roles of gamma subunit in the glutamate uptake-dependent trafficking events or the activation of the astroglial sodium pump, in some cultures gamma subunit/FXYD2 was effectively knocked down using siRNA silencing. Unlike the blocking effect of TFB-TBOA, the down-regulation of gamma subunit had no effect neither on the trafficking nor activity of GLAST. However, the loss of gamma subunit effectively abolished the glutamate uptake-dependent activation of Na+, K+-ATPase. Following withdrawal of siRNA from cultures, the expression levels of gamma subunit and the sensitivity of Na+, K+-ATPase to glutamate/aspartate uptake have been concurrently restored. Thus, the activity of GLAST directs FXYD2 protein/gamma subunit to the cell surface, that, in turn, leads to the activation of the astroglial sodium pump, presumably due to the modulatory effect of gamma subunit on the kinetic parameters of catalytic alpha subunit(s) of Na+, K+-ATPase.
星形胶质细胞中兴奋性神经递质谷氨酸的钠依赖性摄取增加了细胞的能量需求,这主要是由于谷氨酰胺合成酶和钠钾ATP酶消耗的ATP增加所致。GLAST/EAAT1是未分化培养的人胎儿星形胶质细胞表达的唯一谷氨酸转运体亚型,其主要池局限于细胞质区室。谷氨酸浓度升高(高达50微摩尔)刺激了谷氨酸摄取和钠钾ATP酶活性,并同时增加了GLAST和钠钾ATP酶FXYD2/γ亚基的细胞表面表达。谷氨酸或其代谢产物的细胞内积累本身并非这些变化的原因,因为代谢惰性的转运底物D-天冬氨酸也有相同作用。纳摩尔浓度的TFB-TBOA是一种新型的谷氨酸载体非转运抑制剂,几乎完全逆转了谷氨酸或D-天冬氨酸的作用。在相同条件下(即谷氨酸转运受阻),强效钠离子载体莫能菌素对钠钾ATP酶的激活以及γ亚基或GLAST的细胞表面表达均无显著影响。为了阐明γ亚基在谷氨酸摄取依赖性转运事件或星形胶质细胞钠泵激活中的作用,在一些培养物中使用小干扰RNA沉默有效地敲低了γ亚基/FXYD2。与TFB-TBOA的阻断作用不同,γ亚基的下调对GLAST的转运或活性均无影响。然而,γ亚基的缺失有效地消除了谷氨酸摄取依赖性的钠钾ATP酶激活。从培养物中撤除小干扰RNA后,γ亚基的表达水平以及钠钾ATP酶对谷氨酸/天冬氨酸摄取的敏感性同时得以恢复。因此,GLAST的活性将FXYD2蛋白/γ亚基导向细胞表面,这反过来又导致星形胶质细胞钠泵的激活,推测是由于γ亚基对钠钾ATP酶催化α亚基动力学参数的调节作用。