Lin Cheng-Hsien, Lin Mark Chii-Jeng, Sun Yung-Nien
Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, ROC.
Comput Med Imaging Graph. 2007 Apr;31(3):178-90. doi: 10.1016/j.compmedimag.2007.01.002. Epub 2007 Feb 21.
The quality of ultrasonic images is usually influenced by speckle noises and the temporal decorrelation of the speckle patterns. Most traditional motion estimation algorithms are not suitable for speckle tracking in medical ultrasonic images which usually have a low signal-to-noise ratio (SNR). This paper proposes a new motion estimation algorithm that is designed for assessing the dense velocity fields of soft tissue motion in a sequence of ultrasonic B-mode images. We design a hierarchical maximum a posteriori estimator together with an adaptive feature weighted mechanism to estimate the motion field from an ultrasonic image sequence. The proposed method was compared with several existing motion estimation methods via a series of experiments with synthetic speckle image sequences. Performance was also tested on in vivo ultrasonic images. The experimental results show that motion can be assessed with better accuracy than other methods for synthetic speckle images and a good correspondence with clinicians' observations has also been achieved for clinical ultrasonic images.
超声图像的质量通常受散斑噪声以及散斑图案的时间去相关性影响。大多数传统运动估计算法不适用于医学超声图像中的散斑跟踪,因为医学超声图像通常具有较低的信噪比(SNR)。本文提出了一种新的运动估计算法,该算法旨在评估超声B模式图像序列中软组织运动的密集速度场。我们设计了一种分层最大后验估计器以及一种自适应特征加权机制,用于从超声图像序列中估计运动场。通过对合成散斑图像序列进行一系列实验,将所提出的方法与几种现有的运动估计方法进行了比较。还对体内超声图像进行了性能测试。实验结果表明,对于合成散斑图像,该方法能够比其他方法更准确地评估运动,并且对于临床超声图像,也与临床医生的观察结果具有良好的一致性。