Ryabov Yaroslav E, Fushman David
Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742, USA.
J Am Chem Soc. 2007 Mar 21;129(11):3315-27. doi: 10.1021/ja067667r. Epub 2007 Feb 24.
Domain mobility plays an essential role in the biological function of multidomain systems. The characteristic times of domain motions fall into the interval from nano- to milliseconds, amenable to NMR studies. Proper analysis of NMR relaxation data for these systems in solution has to account for interdomain motions, in addition to the overall tumbling and local intradomain dynamics. Here we propose a model of interdomain mobility in a multidomain protein, which considers domain reorientations as exchange/interconversion between two distinct conformational states of the molecule, combined with fully anisotropic overall tumbling. Analysis of 15N-relaxation data for Lys48-linked diubiquitin at pH 4.5 and 6.8 showed that this model adequately fits the experimental data and allows characterization of both structural and motional properties of diubiquitin, thus providing information about the relative orientation of ubiquitin domains in both interconverting states. The analysis revealed that the two domains reorient on a time scale of 9-30 ns, with the amplitudes sufficient for allowing a protein ligand access to the binding sites sequestered at the interface in the closed conformation. The analysis of a possible mechanism controlling the equilibrium between the interconverting states in diubiquitin points toward protonation of His68, which results in three different charged states of the molecule, with zero, +e, and +2e net charge. Only two of the three states are noticeably populated at pH 4.5 or 6.8, which assures applicability of the two-state model to diubiquitin at these conditions. We also compare our model with the "extended model-free" approach and discuss possible future developments of the model.
结构域运动性在多结构域系统的生物学功能中起着至关重要的作用。结构域运动的特征时间范围从纳秒到毫秒,适合进行核磁共振(NMR)研究。除了整体翻滚和局部结构域内动力学外,对溶液中这些系统的NMR弛豫数据进行恰当分析还必须考虑结构域间的运动。在此,我们提出了一种多结构域蛋白质中结构域间运动性的模型,该模型将结构域的重新定向视为分子两种不同构象状态之间的交换/相互转换,并结合完全各向异性的整体翻滚。对pH值为4.5和6.8时赖氨酸48连接的双泛素的15N弛豫数据进行分析表明,该模型能够充分拟合实验数据,并能够表征双泛素的结构和运动特性,从而提供有关两种相互转换状态下泛素结构域相对取向的信息。分析表明,两个结构域在9 - 30纳秒的时间尺度上重新定向,其幅度足以使蛋白质配体能够接触到封闭构象中位于界面处被隔离的结合位点。对控制双泛素中相互转换状态之间平衡的可能机制进行分析,结果指向组氨酸68的质子化,这导致分子出现三种不同的带电状态,净电荷分别为零、+e和+2e。在pH值为4.5或6.8时,三种状态中只有两种状态明显存在,这确保了双态模型在这些条件下对双泛素的适用性。我们还将我们的模型与“扩展的无模型”方法进行了比较,并讨论了该模型未来可能的发展。