Iliev Ivo, Krasteva Vessela, Tabakov Serafim
Department of Electronics, Technical University of Sofia, 8 Kl Ohridski str, 1000, Sofia, Bulgaria.
Physiol Meas. 2007 Mar;28(3):259-76. doi: 10.1088/0967-3334/28/3/003. Epub 2007 Feb 9.
The development of accurate and fast methods for real-time electrocardiogram (ECG) analysis is mandatory in handheld fully automated monitoring devices for high-risk cardiac patients. The present work describes a simple software method for fast detection of pathological cardiac events. It implements real-time procedures for QRS detection, interbeat RR-intervals analysis, QRS waveform evaluation and a decision-tree beat classifier. Two QRS descriptors are defined to assess (i) the RR interval deviation from the mean RR interval and (ii) the QRS waveform deviation from the QRS pattern of the sustained rhythm. The calculation of the second parameter requires a specific technique, in order to satisfy the demand for straight signal processing with minimum iterations and small memory size. This technique includes fast and resource efficient estimation of a histogram matrix, which accumulates dynamically the amplitude-temporal distribution of the successive QRS pattern waveforms. The pilot version of the method is developed in Matlab and it is tested with internationally recognized ECG databases. The assessment of the online single lead QRS detector showed sensitivity and positive predictivity of above 99%. The classification rules for detection of pathological ventricular beats were defined empirically by statistical analysis. The attained specificity and sensitivity are about 99.5% and 95.7% for all databases and about 99.81% and 98.87% for the noise free dataset. The method is applicable in low computational cost systems for long-term ECG monitoring, such as intelligent holters, automatic event/alarm recorders or personal devices with intermittent wireless data transfer to a central terminal.
对于高危心脏病患者的手持式全自动监测设备而言,开发准确快速的实时心电图(ECG)分析方法至关重要。目前的工作描述了一种用于快速检测病理性心脏事件的简单软件方法。它实现了用于QRS检测、心搏间期RR间期分析、QRS波形评估和决策树心搏分类器的实时程序。定义了两个QRS描述符来评估:(i)RR间期与平均RR间期的偏差;(ii)QRS波形与持续心律的QRS模式的偏差。为了满足以最少迭代次数和小内存大小进行直接信号处理的需求,第二个参数的计算需要特定技术。该技术包括快速且资源高效的直方图矩阵估计,该矩阵动态累积连续QRS模式波形的幅度-时间分布。该方法的试验版本在Matlab中开发,并使用国际认可的ECG数据库进行测试。在线单导联QRS检测器的评估显示灵敏度和阳性预测率超过99%。通过统计分析凭经验定义了病理性室性心搏检测的分类规则。对于所有数据库,获得的特异性和灵敏度分别约为99.5%和95.7%,对于无噪声数据集,分别约为99.81%和98.87%。该方法适用于低计算成本的系统,用于长期ECG监测,如智能动态心电图记录仪、自动事件/警报记录器或具有间歇性无线数据传输到中央终端的个人设备。