Suppr超能文献

Impact of S100B on local field potential patterns in anesthetized and kainic acid-induced seizure conditions in vivo.

作者信息

Sakatani Seiichi, Seto-Ohshima Akiko, Itohara Shigeyoshi, Hirase Hajime

机构信息

Hirase Research Unit, Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, Wako-shi, 351-0198, Japan.

出版信息

Eur J Neurosci. 2007 Feb;25(4):1144-54. doi: 10.1111/j.1460-9568.2007.05337.x.

Abstract

S100B is a calcium-binding protein predominantly expressed in astrocytes. Previous studies using gene-manipulated animals have suggested that the protein has a role in synaptic plasticity and learning. In order to assess the physiological roles of the protein in active neural circuitry, we recorded spontaneous neural activities from various layers of the neocortex and hippocampus in urethane-anesthetized S100B knockout (KO) and wildtype (WT) control mice. Typical local field oscillation patterns including the slow (0.5-2 Hz) oscillations in the neocortex, theta (3-8 Hz) and sharp wave-associated ripple (120-180 Hz) oscillations in the hippocampus were observed in both genotypes. Comparisons of the frequency, power and peak amplitude have shown that these oscillatory patterns were virtually indistinguishable between WT and KO. When seizure was induced by intraperitoneal injection of kainic acid, a difference between WT and KO appeared in the CA1 radiatum local field potential pattern, where seizure events were characterized by prominent appearance of hyper-synchronous gamma band (30-80 Hz) activity. Although both genotypes developed seizures within 40 min, the gamma amplitude was significantly smaller during the development of seizures in KO mice. Our results suggest that deficiency of S100B does not have a profound impact on spontaneous neural activity in normal conditions. However, when neural activity was sufficiently raised, activation of S100B-related pathways may take effect, resulting in modulation of neural activities.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验