Toda Noboru, Nakanishi-Toda Megumi
Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Chome, Azuchi-machi, Chuo-ku, Osaka, Japan.
Prog Retin Eye Res. 2007 May;26(3):205-38. doi: 10.1016/j.preteyeres.2007.01.004. Epub 2007 Jan 20.
Nitric oxide (NO) is widely recognized to be quite an important intercellular messenger in the cardiovascular and nervous systems or immunological reactions, including that in the eye. This molecule formed by constitutive NO synthase (NOS), endothelial (eNOS) and neuronal (nNOS), contributes to physiologically regulate ocular hemodynamics and cell viability and protects vascular endothelial cells and nerve cells or fibers against pathogenic factors associated with glaucoma, ischemia, and diabetes mellitus. Ocular blood flow is regulated by NO derived from the endothelium and efferent nitrergic neurons. Endothelial dysfunction impairs ocular hemodynamics by reducing the bioavailability of NO and increasing the production of reactive oxygen species (ROS). On the other hand, NO formed by inducible NOS (iNOS) expressed under influences of inflammatory mediators evokes neurodegeneration and cell apoptosis, leading to serious ocular diseases. NO over-produced by nNOS in the retina stimulated by excitotoxic amino acids or exposed to ischemia also mediates retinal injury. Because of these dichotomous roles of NO, which has both beneficial and pathogenic actions, one may face difficulties in constructing therapeutic strategies with NO supplementation or NOS inhibition. Up-to-date information concerning physiological roles of NO produced by the different NOS isoforms in the eye and interactions between NO and glaucoma, retinal ischemia, or diabetic retinopathy would help clinicians to select a valid pharmacological therapy that would be appropriate for a specific ocular disease.
一氧化氮(NO)被广泛认为是心血管系统、神经系统及免疫反应(包括眼部免疫反应)中非常重要的细胞间信使。由组成型一氧化氮合酶(NOS)、内皮型(eNOS)和神经元型(nNOS)生成的这种分子,有助于生理调节眼部血流动力学和细胞活力,并保护血管内皮细胞以及神经细胞或神经纤维免受与青光眼、缺血和糖尿病相关的致病因素影响。眼部血流受内皮细胞和传出性含氮能神经元产生的NO调节。内皮功能障碍通过降低NO的生物利用度和增加活性氧(ROS)的产生来损害眼部血流动力学。另一方面,在炎症介质影响下由诱导型NOS(iNOS)生成的NO会引发神经退行性变和细胞凋亡,导致严重的眼部疾病。由兴奋性毒性氨基酸刺激或暴露于缺血状态下的视网膜中nNOS过度产生的NO也介导视网膜损伤。由于NO具有有益和致病双重作用,在构建补充NO或抑制NOS的治疗策略时可能会面临困难。有关不同NOS同工型在眼部产生的NO的生理作用以及NO与青光眼、视网膜缺血或糖尿病性视网膜病变之间相互作用的最新信息,将有助于临床医生选择适合特定眼部疾病的有效药物治疗方法。