Sugino K, Nakamura T, Takio K, Miyamoto K, Hasegawa Y, Igarashi M, Titani K, Sugino H
Frontier Research Program, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan.
Endocrinology. 1992 Feb;130(2):789-96. doi: 10.1210/endo.130.2.1733725.
High molecular mass forms [95 kilodaltons (kDa)] of bovine inhibin-A as well as the known forms of intermediate (55 kDa) and low (32 kDa) mass were purified from bovine follicular fluid by ion exchange chromatography on DEAE-Sepharose, immunoaffinity chromatography using a monoclonal antibody directed against bovine 32-kDa inhibin-A, gel permeation HPLC on TSK-gel, and reverse phase HPLC. The 95-kDa inhibin-A had similar suppressive activity on FSH secretion from cultured rat anterior pituitary cells as the 55- and 32-kDa inhibins. There is, however, a possibility that the inhibin activity detected with larger forms may be due to that of the 32-kDa form that results from proteolytic processing during incubation with rat pituitary cells. Both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting analysis using monoclonal antibodies specific for 32-kDa inhibin alpha- or beta A-subunits revealed that the 95-kDa inhibin preparation contained two forms of inhibin (105 and 95 kDa), which were composed of either a 50- or a 40-kDa alpha-subunit linked by a disulfide bond(s) to a 55-kDa beta A-subunit. Amino-terminal sequence analysis showed that the 50-kDa alpha-subunit and the 55-kDa beta A-subunit were generated by removal of a signal peptide from each corresponding primary translation product [the first NH2-terminal 17 residues of the inhibin alpha-subunit (residues 1-360) and the first 20 residues of the inhibin beta A-subunit (residues 1-425)] and suggested that the 40-kDa alpha-subunit was formed by proteolytic processing of the 50-kDa alpha-subunit. On the basis of our findings, we propose that in bovine follicular fluid, the larger 105-kDa form of inhibin is processed successively to form the lowest molecular mass form, 32 kDa inhibin, through the smaller 95- and 55-kDa forms.
通过在DEAE-琼脂糖上进行离子交换色谱、使用针对牛32 kDa抑制素-A的单克隆抗体进行免疫亲和色谱、在TSK凝胶上进行凝胶渗透高效液相色谱以及反相高效液相色谱,从牛卵泡液中纯化出了高分子量形式(95千道尔顿(kDa))的牛抑制素-A以及已知的中等分子量(55 kDa)和低分子量(32 kDa)形式。95 kDa的抑制素-A对培养的大鼠垂体前叶细胞分泌促卵泡激素(FSH)的抑制活性与55 kDa和32 kDa的抑制素相似。然而,用较大形式检测到的抑制素活性有可能是由于在与大鼠垂体细胞孵育过程中经蛋白水解加工产生的32 kDa形式的抑制素所致。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)以及使用针对32 kDa抑制素α或βA亚基的特异性单克隆抗体进行的免疫印迹分析均显示,95 kDa的抑制素制剂包含两种形式的抑制素(105 kDa和9 kDa),它们由通过二硫键与55 kDaβA亚基相连的50 kDa或40 kDaα亚基组成。氨基末端序列分析表明,50 kDa的α亚基和55 kDa的βA亚基是通过从各自相应的初级翻译产物中去除信号肽而产生的[抑制素α亚基的第一个NH2末端17个残基(第1 - 360位残基)和抑制素βA亚基的前20个残基(第1 - 425位残基)],这表明40 kDa的α亚基是由50 kDa的α亚基经蛋白水解加工形成的。基于我们的研究结果,我们提出在牛卵泡液中,较大的105 kDa形式的抑制素会依次经过较小的95 kDa和55 kDa形式加工形成最低分子量形式,即32 kDa的抑制素。