Caracciolo Giulio, Marchini Cristina, Pozzi Daniela, Caminiti Ruggero, Amenitsch Heinz, Montani Maura, Amici Augusto
Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy.
Langmuir. 2007 Apr 10;23(8):4498-508. doi: 10.1021/la063456o. Epub 2007 Mar 7.
Reported here is the correlation between the transfection efficiency of cationic liposome/DNA complexes (lipoplexes) and the structural evolution that they undergo when interacting with anionic membrane lipids. Multicomponent lipoplexes, incorporating from three to six lipid species simultaneously, presented a much higher transfection efficiency than binary lipoplexes, which are more commonly used for gene-delivery purposes. The discovery that a high transfection efficiency can be achieved by employing multicomponent complexes at a lower-than-ever-before membrane charge density of lipoplexes was of primary significance. Synchrotron small-angle X-ray diffraction (SAXD) experiments showed that anionic liposomes made of dioleoylphosphatidylglycerol (DOPG) disintegrated the lamellar phase of lipoplexes. DNA unbinding was measured by electrophoresis on agarose gels. Most importantly, structural changes induced by anionic lipids strictly depended on the lipid composition of lipoplexes. We found evidence of the existence of three different regimes of stability related to the interaction between complexes and anionic membranes. Both unstable (with low membrane charge density, sigmaM) and highly stable lipoplexes (with high sigmaM) exhibited low transfection efficiency whereas highly efficient multicomponent lipoplexes exhibited an "optimal stability". This intermediate regime reflects a compromise between two opposing constraints: protection of DNA in the cytosol and endosomal escape. Here we advance the concept that structural stability, upon interaction with cellular anionic lipids, is a key factor governing the transfection efficiency of lipoplexes. Possible molecular mechanisms underlying experimental observations are also discussed.
本文报道了阳离子脂质体/DNA复合物(脂质复合物)的转染效率与其与阴离子膜脂质相互作用时所经历的结构演变之间的相关性。同时包含三到六种脂质成分的多组分脂质复合物,其转染效率比常用于基因递送目的的二元脂质复合物高得多。在脂质复合物的膜电荷密度低于以往任何时候的情况下,通过使用多组分复合物可实现高转染效率,这一发现具有重要意义。同步加速器小角X射线衍射(SAXD)实验表明,由二油酰磷脂酰甘油(DOPG)制成的阴离子脂质体使脂质复合物的层状相解体。通过琼脂糖凝胶电泳测量DNA解离。最重要的是,阴离子脂质诱导的结构变化严格取决于脂质复合物的脂质组成。我们发现了与复合物和阴离子膜之间相互作用相关的三种不同稳定性状态存在的证据。不稳定的(膜电荷密度低,σM)和高度稳定的脂质复合物(σM高)都表现出低转染效率,而高效的多组分脂质复合物表现出“最佳稳定性”。这种中间状态反映了两个相互对立的限制之间的折衷:保护胞质溶胶中的DNA和内体逃逸。在此,我们提出这样一个概念,即与细胞阴离子脂质相互作用时的结构稳定性是决定脂质复合物转染效率的关键因素。还讨论了实验观察结果背后可能的分子机制。