Potok R M, Rau I G, Shtrikman Hadas, Oreg Yuval, Goldhaber-Gordon D
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Nature. 2007 Mar 8;446(7132):167-71. doi: 10.1038/nature05556.
Some of the most intriguing problems in solid-state physics arise when the motion of one electron dramatically affects the motion of surrounding electrons. Traditionally, such highly correlated electron systems have been studied mainly in materials with complex transition metal chemistry. Over the past decade, researchers have learned to confine one or a few electrons within a nanometre-scale semiconductor 'artificial atom', and to understand and control this simple system in detail(3). Here we combine artificial atoms to create a highly correlated electron system within a nano-engineered semiconductor structure. We tune the system in situ through a quantum phase transition between two distinct states, each a version of the Kondo state, in which a bound electron interacts with surrounding mobile electrons. The boundary between these competing Kondo states is a quantum critical point-namely, the exotic and previously elusive two-channel Kondo state, in which electrons in two reservoirs are entangled through their interaction with a single localized spin.
当一个电子的运动显著影响周围电子的运动时,固态物理学中就会出现一些最引人入胜的问题。传统上,这类高度关联的电子系统主要在具有复杂过渡金属化学性质的材料中进行研究。在过去十年中,研究人员已经学会将一个或几个电子限制在纳米级半导体“人工原子”内,并详细理解和控制这个简单系统(3)。在这里,我们将人工原子结合起来,在一个纳米工程半导体结构中创建一个高度关联的电子系统。我们通过在两个不同状态之间的量子相变来原位调节该系统,每个状态都是近藤态的一个版本,其中一个束缚电子与周围的移动电子相互作用。这些相互竞争的近藤态之间的边界是一个量子临界点——即奇特且此前难以捉摸的双通道近藤态,其中两个库中的电子通过与单个局域自旋的相互作用而纠缠在一起。