超薄聚合物层层组装膜内量子点的底物和时间依赖性光致发光
Substrate- and time-dependent photoluminescence of quantum dots inside the ultrathin polymer LbL film.
作者信息
Zimnitsky Dmitry, Jiang Chaoyang, Xu Jun, Lin Zhiqun, Tsukruk Vladimir V
机构信息
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
出版信息
Langmuir. 2007 Apr 10;23(8):4509-15. doi: 10.1021/la0636917. Epub 2007 Mar 9.
The photoluminescence of CdSe/ZnS quantum dots (QDs) in different configurations at solid surfaces (glass, silicon, PDMS, and metals) is considered for three types of organization: QDs directly adsorbed on solid surfaces, separated from the solid surface by a nanoscale polymer film with different thickness, and encapsulated into a polymer film. The complete suppression of photoluminescence for QDs on conductive metal surfaces (copper, gold) indicated a strong quenching effect. The temporal variation of the photoluminescent intensity on other substrates (glass, silicon, and PDMS) can be tuned by placing the nanoscale (3-50 nm) LbL polymer film between QDs and the substrate. The photooxidation and photobleaching processes of QD nanoparticles in the vicinity of the solid surface can be tuned by proper selection of the substrate and the dielectric nanoscale polymer film placed between the substrate and QDs. Moreover, the encapsulation of QD nanoparticles into the polymer film resulted in a dramatic initial increase in the photoemission intensity due to the accelerated photooxidation process. The phenomenon of enhanced photoemission of QDs encapsulated into the ultrathin polymer film provides not only the opportunity for making flexible, ultrathin, QD-containing polymer films, transferable to any microfabricated substrate, but also improved light emitting properties.
针对三种组织类型,研究了不同构型的CdSe/ZnS量子点(QDs)在固体表面(玻璃、硅、聚二甲基硅氧烷和金属)的光致发光情况:量子点直接吸附在固体表面、通过不同厚度的纳米级聚合物膜与固体表面隔开以及封装在聚合物膜中。导电金属表面(铜、金)上的量子点光致发光完全被抑制,表明存在强烈的猝灭效应。通过在量子点和基底之间放置纳米级(3 - 50纳米)的层层组装聚合物膜,可以调节其他基底(玻璃、硅和聚二甲基硅氧烷)上光致发光强度的时间变化。通过适当选择基底以及置于基底和量子点之间的介电纳米级聚合物膜,可以调节固体表面附近量子点纳米颗粒的光氧化和光漂白过程。此外,由于光氧化过程加速,将量子点纳米颗粒封装到聚合物膜中会导致光发射强度在初始阶段急剧增加。封装在超薄聚合物膜中的量子点增强光发射现象不仅为制备可转移到任何微加工基底上的柔性、超薄、含量子点的聚合物膜提供了机会,还改善了发光性能。