Basler Marek, Knapp Oliver, Masin Jiri, Fiser Radovan, Maier Elke, Benz Roland, Sebo Peter, Osicka Radim
Institute of Microbiology of the Academy of Sciences of the Czech Republic, Videnska 1083, CZ-142 20 Prague 4, Czech Republic.
J Biol Chem. 2007 Apr 27;282(17):12419-29. doi: 10.1074/jbc.M611226200. Epub 2007 Mar 8.
Bordetella adenylate cyclase toxin-hemolysin (CyaA, AC-Hly, or ACT) permeabilizes cell membranes by forming small cation-selective (hemolytic) pores and subverts cellular signaling by delivering into host cells an adenylate cyclase (AC) enzyme that converts ATP to cAMP. Both AC delivery and pore formation were previously shown to involve a predicted amphipathic alpha-helix(502-522) containing a pair of negatively charged Glu(509) and Glu(516) residues. Another predicted transmembrane alpha-helix(565-591) comprises a Glu(570) and Glu(581) pair. We examined the roles of these glutamates in the activity of CyaA. Substitutions of Glu(516) increased specific hemolytic activity of CyaA by two different molecular mechanisms. Replacement of Glu(516) by positively charged lysine residue (E516K) increased the propensity of CyaA to form pores, whereas proline (E516P) or glutamine (E516Q) substitutions extended the lifetime of open single pore units. All three substitutions also caused a drop of pore selectivity for cations. Substitutions of Glu(570) and Glu(581) by helix-breaking proline or positively charged lysine residue reduced (E570K, E581P) or ablated (E570P, E581K) AC membrane translocation. Moreover, E570P, E570K, and E581P substitutions down-modulated also the specific hemolytic activity of CyaA. In contrast, the E581K substitution enhanced the hemolytic activity of CyaA 4 times, increasing both the frequency of formation and lifetime of toxin pores. Negative charge at position 570, but not at position 581, was found to be essential for cation selectivity of the pore, suggesting a role of Glu(570) in ion filtering inside or close to pore mouth. The pairs of glutamate residues in the predicted transmembrane segments of CyaA thus appear to play a key functional role in membrane translocation and pore-forming activities of CyaA.
博德特氏菌腺苷酸环化酶毒素 - 溶血素(CyaA,AC - Hly或ACT)通过形成小的阳离子选择性(溶血)孔使细胞膜通透性增加,并通过将一种能将ATP转化为cAMP的腺苷酸环化酶(AC)递送到宿主细胞中来颠覆细胞信号传导。先前已表明,AC递送和孔形成都涉及一个预测的两亲性α - 螺旋(502 - 522),其中含有一对带负电荷的谷氨酸(Glu)残基Glu(509)和Glu(516)。另一个预测的跨膜α - 螺旋(565 - 591)包含一对Glu(570)和Glu(581)。我们研究了这些谷氨酸在CyaA活性中的作用。Glu(516)的取代通过两种不同的分子机制提高了CyaA的特异性溶血活性。用带正电荷的赖氨酸残基取代Glu(516)(E516K)增加了CyaA形成孔的倾向,而脯氨酸(E516P)或谷氨酰胺(E516Q)取代延长了单个开放孔单元的寿命。所有这三种取代还导致孔对阳离子的选择性下降。用破坏螺旋的脯氨酸或带正电荷的赖氨酸残基取代Glu(570)和Glu(581)会降低(E570K,E581P)或消除(E570P,E581K)AC的膜易位。此外,E570P、E570K和E581P取代也下调了CyaA的特异性溶血活性。相比之下,E581K取代使CyaA的溶血活性提高了4倍,增加了毒素孔形成的频率和寿命。发现570位的负电荷而非581位的负电荷对于孔的阳离子选择性至关重要,这表明Glu(570)在孔内或孔口附近的离子过滤中起作用。因此,CyaA预测跨膜片段中的谷氨酸残基对在CyaA的膜易位和孔形成活性中似乎起着关键的功能作用。