Chitlaru Theodor, Gat Orit, Grosfeld Haim, Inbar Itzhak, Gozlan Yael, Shafferman Avigdor
Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
Infect Immun. 2007 Jun;75(6):2841-52. doi: 10.1128/IAI.02029-06. Epub 2007 Mar 12.
In a previous comparative proteomic study of Bacillus anthracis examining the influence of the virulence plasmids and of various growth conditions on the composition of the bacterial secretome, we identified 64 abundantly expressed proteins (T. Chitlaru, O. Gat, Y. Gozlan, N. Ariel, and A. Shafferman, J. Bacteriol. 188:3551-3571, 2006). Using a battery of sera from B. anthracis-infected animals, in the present study we demonstrated that 49 of these proteins are immunogenic. Thirty-eight B. anthracis immunogens are documented in this study for the first time. The relative immunogenicities of the 49 secreted proteins appear to span a >10,000-fold range. The proteins eliciting the highest humoral response in the course of infection include, in addition to the well-established immunogens protective antigen (PA), Sap, and EA1, GroEL (BA0267), AhpC (BA0345), MntA (BA3189), HtrA (BA3660), 2,3-cyclic nucleotide diesterase (BA4346), collagen adhesin (BAS5205), an alanine amidase (BA0898), and an endopeptidase (BA1952), as well as three proteins having unknown functions (BA0796, BA0799, and BA0307). Of these 14 highly potent secreted immunogens, 11 are known to be associated with virulence and pathogenicity in B. anthracis or in other bacterial pathogens. Combining the results reported here with the results of a similar study of the membranal proteome of B. anthracis (T. Chitlaru, N. Ariel, A. Zvi, M. Lion, B. Velan, A. Shafferman, and E. Elhanany, Proteomics 4:677-691, 2004) and the results obtained in a functional genomic search for immunogens (O. Gat, H. Grosfeld, N. Ariel, I. Inbar, G. Zaide, Y. Broder, A. Zvi, T. Chitlaru, Z. Altboum, D. Stein, S. Cohen, and A. Shafferman, Infect. Immun. 74:3987-4001, 2006), we generated a list of 84 in vivo-expressed immunogens for future evaluation for vaccine development, diagnostics, and/or therapeutic intervention. In a preliminary study, the efficacies of eight immunogens following DNA immunization of guinea pigs were compared to the efficacy of a PA DNA vaccine. All eight immunogens induced specific high antibody titers comparable to the titers elicited by PA; however, unlike PA, none of them provided protection against a lethal challenge (50 50% lethal doses) of virulent B. anthracis strain Vollum spores.
在之前一项炭疽芽孢杆菌的比较蛋白质组学研究中,我们研究了毒力质粒和各种生长条件对细菌分泌蛋白质组组成的影响,鉴定出了64种高表达蛋白(T. 奇特拉鲁、O. 加特、Y. 戈兹兰、N. 阿里尔和A. 沙弗曼,《细菌学杂志》188:3551 - 3571,2006年)。在本研究中,我们使用一组来自感染炭疽芽孢杆菌动物的血清,证明这些蛋白中有49种具有免疫原性。本研究首次记录了38种炭疽芽孢杆菌免疫原。这49种分泌蛋白的相对免疫原性似乎跨越了超过10000倍的范围。在感染过程中引发最高体液反应的蛋白除了公认的免疫原保护性抗原(PA)、Sap和EA1外,还包括GroEL(BA0267)、AhpC(BA0345)、MntA(BA3189)、HtrA(BA3660)、2,3 - 环核苷酸二酯酶(BA4346)、胶原黏附素(BAS5205)、一种丙氨酸酰胺酶(BA0898)和一种内肽酶(BA1952),以及三种功能未知的蛋白(BA0796、BA0799和BA0307)。在这14种高效分泌免疫原中,已知有11种与炭疽芽孢杆菌或其他细菌病原体的毒力和致病性相关。将本研究报告的结果与炭疽芽孢杆菌膜蛋白质组的类似研究结果(T. 奇特拉鲁、N. 阿里尔、A. 兹维、M. 利昂、B. 韦兰、A. 沙弗曼和E. 埃尔哈纳尼,《蛋白质组学》4:677 - 691,2004年)以及在功能性基因组免疫原搜索中获得的结果(O. 加特、H. 格罗斯费尔德、N. 阿里尔、I. 英巴尔、G. 扎伊德、Y. 布罗德、A. 兹维、T. 奇特拉鲁、Z. 阿尔特布姆、D. 斯坦、S. 科恩和A. 沙弗曼,《感染与免疫》74:3987 - 4001,2006年)相结合,我们生成了一份84种体内表达免疫原的清单,以供未来在疫苗开发、诊断和/或治疗干预方面进行评估。在一项初步研究中,将豚鼠经DNA免疫后8种免疫原的效力与PA DNA疫苗的效力进行了比较。所有8种免疫原均诱导出了与PA诱导的滴度相当的特异性高抗体滴度;然而,与PA不同的是,它们均未提供针对强毒株沃勒姆炭疽芽孢杆菌孢子致死性攻击(50个50%致死剂量)的保护。