Suppr超能文献

用于人类脑部分割的自动拓扑校正

Automated topology correction for human brain segmentation.

作者信息

Chen Lin, Wagenknecht Gudrun

机构信息

Central Institute for Electronics, Research Center Juelich, Juelich, Germany.

出版信息

Med Image Comput Comput Assist Interv. 2006;9(Pt 2):316-23. doi: 10.1007/11866763_39.

Abstract

We describe a new method to reconstruct human brain structures from 3D magnetic resonance brain images. Our method provides a fully automatic topology correction mechanism, thus avoiding tedious manual correction. Topological correctness is important because it is an essential prerequisite for brain atlas deformation and surface flattening. Our method uses an axis-aligned sweep through the volume to locate handles. Handles are detected by successively constructing and analyzing a directed graph. A multiple local region-growing process is used which simultaneously acts on the foreground and the background to isolate handles and tunnels. The sizes of handles and tunnels are measured, then handles are removed or tunnels filled based on their sizes. This process was used for 256 T1-weighted MR volumes.

摘要

我们描述了一种从三维磁共振脑图像重建人脑结构的新方法。我们的方法提供了一种全自动的拓扑校正机制,从而避免了繁琐的手动校正。拓扑正确性很重要,因为它是脑图谱变形和表面扁平化的必要前提。我们的方法使用一个与轴对齐的体扫来定位把手。通过依次构建和分析一个有向图来检测把手。使用一个多局部区域生长过程,该过程同时作用于前景和背景以分离把手和通道。测量把手和通道的大小,然后根据它们的大小移除把手或填充通道。这个过程用于256个T1加权磁共振体数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验