Suppr超能文献

基于先验知识的脑磁共振成像多尺度分割

Prior knowledge driven multiscale segmentation of brain MRI.

作者信息

Akselrod-Ballin Ayelet, Galun Meirav, Gomori John Moshe, Brandt Achi, Basri Ronen

机构信息

Dept. of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Med Image Comput Comput Assist Interv. 2007;10(Pt 2):118-26. doi: 10.1007/978-3-540-75759-7_15.

Abstract

We present a novel automatic multiscale algorithm applied to segmentation of anatomical structures in brain MRI. The algorithm which is derived from algebraic multigrid, uses a graph representation of the image and performs a coarsening process that produces a full hierarchy of segments. Our main contribution is the incorporation of prior knowledge information into the multiscale framework through a Bayesian formulation. The probabilistic information is based on an atlas prior and on a likelihood function estimated from a manually labeled training set. The significance of our new approach is that the constructed pyramid, reflects the prior knowledge formulated. This leads to an accurate and efficient methodology for detection of various anatomical structures simultaneously. Quantitative validation results on gold standard MRI show the benefit of our approach.

摘要

我们提出了一种应用于脑磁共振成像(MRI)中解剖结构分割的新型自动多尺度算法。该算法源自代数多重网格,使用图像的图表示,并执行一个粗化过程,生成完整的细分层次结构。我们的主要贡献是通过贝叶斯公式将先验知识信息纳入多尺度框架。概率信息基于图谱先验和从手动标注的训练集估计的似然函数。我们新方法的意义在于构建的金字塔反映了所制定的先验知识。这导致了一种同时检测各种解剖结构的准确且高效的方法。在金标准MRI上的定量验证结果显示了我们方法的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验