Mori Kensaku, Deguchi Daisuke, Kitasaka Takayuki, Suenaga Yasuhito, Takabatake Hirotsugu, Mori Masaki, Natori Hiroshi, Maurer Calvin R
Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):645-52. doi: 10.1007/11866763_79.
This paper presents a method for tracking a bronchoscope based on motion prediction and image registration from multiple initial starting points as a function of a bronchoscope navigation system. We try to improve performance of bronchoscope tracking based on image registration using multiple initial guesses estimated using motion prediction. This method basically tracks a bronchoscopic camera by image registration between real bronchoscopic images and virtual ones derived from CT images taken prior to the bronchoscopic examinations. As an initial guess for image registration, we use multiple starting points to avoid falling into local minima. These initial guesses are computed using the motion prediction results obtained from the Kalman filter's output. We applied the proposed method to nine pairs of X-ray CT images and real bronchoscopic video images. The experimental results showed significant performance in continuous tracking without using any positional sensors.
本文提出了一种基于运动预测和图像配准的支气管镜跟踪方法,该方法可从多个初始起点出发,作为支气管镜导航系统的一项功能。我们试图通过使用基于运动预测估计的多个初始猜测来提高基于图像配准的支气管镜跟踪性能。该方法主要通过对真实支气管镜图像与支气管镜检查前拍摄的CT图像衍生出的虚拟图像进行图像配准,来跟踪支气管镜摄像头。作为图像配准的初始猜测,我们使用多个起点以避免陷入局部最小值。这些初始猜测是利用从卡尔曼滤波器输出获得的运动预测结果来计算的。我们将所提出的方法应用于九对X射线CT图像和真实支气管镜视频图像。实验结果表明,在不使用任何位置传感器的情况下,该方法在连续跟踪方面具有显著性能。