Suppr超能文献

基于序贯蒙特卡罗方法的导航支气管镜中支气管镜运动的稳健跟踪:动态体模和患者验证。

Robust bronchoscope motion tracking using sequential Monte Carlo methods in navigated bronchoscopy: dynamic phantom and patient validation.

机构信息

Graduate School of Information Science, Nagoya University, Nagoya, Japan.

出版信息

Int J Comput Assist Radiol Surg. 2012 May;7(3):371-87. doi: 10.1007/s11548-011-0645-6. Epub 2011 Jul 23.

Abstract

PURPOSE

Accurate and robust estimates of camera position and orientation in a bronchoscope are required for navigation. Fusion of pre-interventional information (e.g., CT, MRI, or US) and intra-interventional information (e.g., bronchoscopic video) were incorporated into a navigation system to provide physicians with an augmented reality environment for bronchoscopic interventions.

METHODS

Two approaches were used to predict bronchoscope movements by incorporating sequential Monte Carlo (SMC) simulation including (1) image-based tracking techniques and (2) electromagnetic tracking (EMT) methods. SMC simulation was introduced to model ambiguities or uncertainties that occurred in image- and EMT-based bronchoscope tracking. Scale invariant feature transform (SIFT) features were employed to overcome the limitations of image-based motion tracking methods. Validation was performed on five phantom and ten human case datasets acquired in the supine position.

RESULTS

For dynamic phantom validation, the EMT-SMC simulation method improved the tracking performance of the successfully registered bronchoscopic video frames by 12.7% compared with a hybrid-based method. In comparisons between tracking results and ground truth, the accuracy of the EMT-SMC simulation method was 1.51 mm (positional error) and 5.44° (orientation error). During patient assessment, the SIFT-SMC simulation scheme was more stable or robust than a previous image-based approach for bronchoscope motion estimation, showing 23.6% improvement of successfully tracked frames. Comparing the estimates of our method to ground truth, the position and orientation errors are 3.72 mm and 10.2°, while those of our previous image-based method were at least 7.77 mm and 19.3°. The computational times of our EMT- and SIFT-SMC simulation methods were 0.9 and 1.2 s per frame, respectively.

CONCLUSION

The SMC simulation method was developed to model ambiguities that occur in bronchoscope tracking. This method more stably and accurately predicts the bronchoscope camera position and orientation parameters, reducing uncertainties due to problematic bronchoscopic video frames and airway deformation during intra-bronchoscopy navigation.

摘要

目的

在导航中需要准确和稳健的支气管镜相机位置和方向估计。将术前信息(例如 CT、MRI 或 US)和术中信息(例如支气管镜视频)融合到导航系统中,为医生提供支气管镜介入的增强现实环境。

方法

使用两种方法通过合并顺序蒙特卡罗(SMC)模拟来预测支气管镜运动,包括(1)基于图像的跟踪技术和(2)电磁跟踪(EMT)方法。SMC 模拟被引入以模拟基于图像和 EMT 的支气管镜跟踪中出现的模糊性或不确定性。尺度不变特征变换(SIFT)特征用于克服基于图像的运动跟踪方法的局限性。在仰卧位采集的五个幻影和十个人体病例数据集上进行了验证。

结果

对于动态幻影验证,与基于混合的方法相比,EMT-SMC 模拟方法将成功注册的支气管镜视频帧的跟踪性能提高了 12.7%。在跟踪结果与真实值的比较中,EMT-SMC 模拟方法的精度为 1.51 毫米(位置误差)和 5.44°(方向误差)。在患者评估中,SIFT-SMC 模拟方案比以前的基于图像的支气管镜运动估计方法更稳定或稳健,成功跟踪的帧数提高了 23.6%。将我们的方法的估计值与真实值进行比较,位置和方向误差分别为 3.72 毫米和 10.2°,而我们以前的基于图像的方法的误差至少为 7.77 毫米和 19.3°。我们的 EMT 和 SIFT-SMC 模拟方法的计算时间分别为 0.9 和 1.2 秒/帧。

结论

SMC 模拟方法是为了模拟支气管镜跟踪中出现的模糊性而开发的。该方法更稳定和准确地预测了支气管镜相机的位置和方向参数,减少了由于有问题的支气管镜视频帧和气道变形引起的不确定性,从而在支气管镜导航期间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验