Eeds A M, Mortlock D, Wade-Martins R, Summar M L
Program in Translational Genetics, Center for Human Genetic Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
Am J Hum Genet. 2007 Apr;80(4):740-50. doi: 10.1086/513287. Epub 2007 Mar 8.
As we identify more and more genetic changes, either through mutation studies or population screens, we need powerful tools to study their potential molecular effects. With these tools, we can begin to understand the contributions of genetic variations to the wide range of human phenotypes. We used our catalogue of molecular changes in patients with carbamyl phosphate synthetase I (CPSI) deficiency to develop such a system for use in eukaryotic cells. We developed the tools and methods for rapidly modifying bacterial artificial chromosomes (BACs) for eukaryotic episomal replication, marker expression, and selection and then applied this protocol to a BAC containing the entire CPSI gene. Although this CPSI BAC construct was suitable for studying nonsynonymous mutations, potential splicing defects, and promoter variations, our focus was on studying potential splicing and RNA-processing defects to validate this system. In this article, we describe the construction of this system and subsequently examine the mechanism of four putative splicing mutations in patients deficient in CPSI. Using this model, we also demonstrate the reversible role of nonsense-mediated decay in all four mutations, using small interfering RNA knockdown of hUPF2. Furthermore, we were able to locate cryptic splicing sites for the two intronic mutations. This BAC-based system permits expression studies in the absence of patient RNA or tissues with relevant gene expression and provides experimental flexibility not available in genomic DNA or plasmid constructs. Our splicing and RNA degradation data demonstrate the advantages of using whole-gene constructs to study the effects of sequence variation on gene expression and function.
随着我们通过突变研究或群体筛查识别出越来越多的基因变化,我们需要强大的工具来研究它们潜在的分子效应。借助这些工具,我们能够开始理解基因变异对广泛人类表型的贡献。我们利用氨甲酰磷酸合成酶I(CPSI)缺乏症患者的分子变化目录,开发了这样一个用于真核细胞的系统。我们开发了用于快速修饰细菌人工染色体(BAC)以实现真核游离复制、标记表达和筛选的工具和方法,然后将该方案应用于包含整个CPSI基因的BAC。尽管这个CPSI BAC构建体适用于研究非同义突变、潜在的剪接缺陷和启动子变异,但我们的重点是研究潜在的剪接和RNA加工缺陷以验证该系统。在本文中,我们描述了这个系统的构建,并随后研究了CPSI缺乏症患者中四个假定剪接突变的机制。使用这个模型,我们还通过小干扰RNA敲低hUPF2,证明了无义介导的衰变在所有四个突变中的可逆作用。此外,我们能够定位两个内含子突变的隐蔽剪接位点。这个基于BAC的系统允许在没有患者RNA或具有相关基因表达的组织的情况下进行表达研究,并提供了基因组DNA或质粒构建体所没有的实验灵活性。我们的剪接和RNA降解数据证明了使用全基因构建体来研究序列变异对基因表达和功能影响的优势。