Suppr超能文献

无限随机排列粒子晶格的引力动力学。

Gravitational dynamics of an infinite shuffled lattice of particles.

作者信息

Baertschiger T, Joyce M, Gabrielli A, Labini F Sylos

机构信息

Dipartimento di Fisica, Università La Sapienza, Piazzale A. Moro 2, I-00185 Rome, Italy.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Feb;75(2 Pt 1):021113. doi: 10.1103/PhysRevE.75.021113. Epub 2007 Feb 15.

Abstract

We study, using numerical simulations, the dynamical evolution of self-gravitating point particles in static Euclidean space, starting from a simple class of infinite "shuffled lattice" initial conditions. These are obtained by applying independently to each particle on an infinite perfect lattice a small random displacement, and are characterized by a power spectrum (structure factor) of density fluctuations which is quadratic in the wave number k, at small k. For a specified form of the probability distribution function of the "shuffling" applied to each particle, and zero initial velocities, these initial configurations are characterized by a single relevant parameter: the variance delta(2) of the "shuffling" normalized in units of the lattice spacing l. The clustering, which develops in time starting from scales around l, is qualitatively very similar to that seen in cosmological simulations, which begin from lattices with applied correlated displacements and incorporate an expanding spatial background. From very soon after the formation of the first nonlinear structures, a spatiotemporal scaling relation describes well the evolution of the two-point correlations. At larger times the dynamics of these correlations converges to what is termed "self-similar" evolution in cosmology, in which the time dependence in the scaling relation is specified entirely by that of the linearized fluid theory. Comparing simulations with different delta, different resolution, but identical large scale fluctuations, we are able to identify and study features of the dynamics of the system in the transient phase leading to this behavior. In this phase, the discrete nature of the system explicitly plays an essential role.

摘要

我们通过数值模拟研究了静态欧几里得空间中自引力点粒子的动力学演化,初始条件为一类简单的无限“随机排列晶格”。这些初始条件是通过对无限完美晶格上的每个粒子独立施加一个小的随机位移而得到的,其密度涨落的功率谱(结构因子)在小波数k处是波数k的二次函数。对于应用于每个粒子的“随机排列”概率分布函数的特定形式以及零初始速度,这些初始构型由一个相关参数表征:以晶格间距l为单位归一化的“随机排列”方差δ²。从尺度约为l的初始状态开始随时间发展的聚类,在定性上与宇宙学模拟中看到的聚类非常相似,后者从具有相关位移的晶格开始并包含一个膨胀的空间背景。从第一个非线性结构形成后不久开始,一个时空标度关系就能很好地描述两点关联的演化。在更长时间后,这些关联的动力学收敛到宇宙学中所谓的“自相似”演化,其中标度关系中的时间依赖性完全由线性化流体理论的时间依赖性确定。通过比较具有不同δ、不同分辨率但具有相同大尺度涨落的模拟,我们能够识别和研究系统在导致这种行为的瞬态阶段的动力学特征。在这个阶段,系统的离散性质明确地起着至关重要的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验