Koch Hans Peter, Brown Ronald Lane, Larsson Hans Peter
Neurological Sciences Institute, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
J Neurosci. 2007 Mar 14;27(11):2943-7. doi: 10.1523/JNEUROSCI.0118-07.2007.
Excitatory amino acid transporters (EAATs) use sodium and potassium gradients to remove glutamate from the synapse and surrounding extracellular space, thereby sustaining efficient synaptic transmission and maintaining extracellular glutamate concentrations at subneurotoxic levels. In addition to sodium-driven glutamate uptake, EAATs also mediate a glutamate-activated chloride conductance via a channel-like mechanism. EAATs are trimeric proteins and are thought to comprise three identical subunits. Previous studies have shown that the sodium-driven uptake of glutamate occurs independently in each of the three subunits. In contrast, a recent study reports high Hill coefficients for the activation of EAAT anion currents by glutamate and suggests that the subunits function cooperatively in gating the chloride conductance. In the present work, we find that the Hill coefficient for the activation of the anion current by glutamate is approximately 1 in both EAAT3 and EAAT4. Furthermore, we also used fluorescent labeling and inactivation correlation on EAAT3 and EAAT4 to determine whether the glutamate-activated chloride conductance is gated independently or cooperatively by the transporters. We found that both glutamate uptake currents and glutamate-activated chloride currents are mediated independently by each subunit of an EAAT multimer. It has been suggested that EAAT subtypes with particularly large anion conductances can directly influence the excitability of presynaptic terminals in certain neurons. Thus, the finding that the anion conductance is gated independently, rather than cooperatively, is important because it significantly alters predictions of the influence that EAAT-mediated anion currents will have on synaptic transmission at low glutamate concentrations.
兴奋性氨基酸转运体(EAATs)利用钠和钾的浓度梯度从突触和周围细胞外空间清除谷氨酸,从而维持有效的突触传递,并将细胞外谷氨酸浓度维持在亚神经毒性水平。除了钠驱动的谷氨酸摄取外,EAATs还通过类似通道的机制介导谷氨酸激活的氯电导。EAATs是三聚体蛋白,被认为由三个相同的亚基组成。先前的研究表明,钠驱动的谷氨酸摄取在三个亚基中的每一个中独立发生。相比之下,最近的一项研究报告了谷氨酸激活EAAT阴离子电流的高希尔系数,并表明这些亚基在控制氯电导方面协同发挥作用。在本研究中,我们发现EAAT3和EAAT4中谷氨酸激活阴离子电流的希尔系数均约为1。此外,我们还对EAAT3和EAAT4进行了荧光标记和失活相关性分析,以确定谷氨酸激活的氯电导是由转运体独立控制还是协同控制。我们发现,EAAT多聚体的每个亚基都独立介导谷氨酸摄取电流和谷氨酸激活的氯电流。有人提出,具有特别大阴离子电导的EAAT亚型可以直接影响某些神经元中突触前终末的兴奋性。因此,阴离子电导是独立控制而非协同控制这一发现很重要,因为它显著改变了对EAAT介导的阴离子电流在低谷氨酸浓度下对突触传递影响的预测。