Torres-Salazar Delany, Fahlke Christoph
Abteilung Neurophysiologie, Medizinische Hochschule, 30625 Hannover, Germany.
J Neurosci. 2006 Jul 12;26(28):7513-22. doi: 10.1523/JNEUROSCI.4545-05.2006.
Excitatory amino acid transporters (EAATs) play a central role in the termination of synaptic transmission and in extracellular glutamate homeostasis in the mammalian CNS. A functional transporter is assembled as oligomer consisting of three subunits, each of which appears to transport glutamate independently from the neighboring subunits. EAATs do not only sustain a secondary-active glutamate transport but also function as anion channel. We here address the question whether intersubunit interactions play a role in pore-mediated anion conduction. We expressed a neuronal isoform, EAAT4, heterologously in Xenopus oocytes and mammalian cells and measured glutamate flux and anion currents under various concentrations of Na+ and glutamate. EAAT4 anion channels are active in the absence of both substrates, and increasing concentrations activate EAAT4 anion currents with a sigmoidal concentration dependence. Because only one glutamate molecule is cotransported per uptake cycle, the cooperativity between glutamate binding sites most likely arises from an interaction between different carrier domains. This interaction is modified by two point mutations close to the putative glutamate binding site, G464S and Q467S. Both mutations alter the dissociation constants and Hill coefficient of the substrate dependence of anion currents, leaving the concentration dependence of glutamate uptake unaffected. Our results demonstrate that glutamate carriers cooperatively interact during anion channel activation.
兴奋性氨基酸转运体(EAATs)在哺乳动物中枢神经系统(CNS)的突触传递终止和细胞外谷氨酸稳态中起着核心作用。功能性转运体由三个亚基组成的寡聚体组装而成,每个亚基似乎独立于相邻亚基转运谷氨酸。EAATs不仅维持继发性主动谷氨酸转运,还作为阴离子通道发挥作用。我们在此探讨亚基间相互作用是否在孔介导的阴离子传导中起作用。我们在非洲爪蟾卵母细胞和哺乳动物细胞中异源表达神经元亚型EAAT4,并在不同浓度的Na+和谷氨酸条件下测量谷氨酸通量和阴离子电流。EAAT4阴离子通道在两种底物均不存在时具有活性,浓度增加会以S形浓度依赖性激活EAAT4阴离子电流。由于每个摄取循环仅共转运一个谷氨酸分子,谷氨酸结合位点之间的协同性很可能源于不同载体结构域之间的相互作用。这种相互作用因靠近假定谷氨酸结合位点的两个点突变G464S和Q467S而改变。两种突变均改变了阴离子电流底物依赖性的解离常数和希尔系数,而谷氨酸摄取的浓度依赖性不受影响。我们的结果表明,谷氨酸载体在阴离子通道激活过程中协同相互作用。