Suppr超能文献

用于医学超声系统的基于高斯小波的动态滤波(GWDF)方法。

Gaussian wavelet based dynamic filtering (GWDF) method for medical ultrasound systems.

作者信息

Wang Peidong, Shen Yi, Wang Qiang

机构信息

Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China.

出版信息

Ultrasonics. 2007 May;46(2):168-76. doi: 10.1016/j.ultras.2007.01.005. Epub 2007 Feb 8.

Abstract

In this paper, a novel dynamic filtering method using Gaussian wavelet filters is proposed to remove noise from ultrasound echo signal. In the proposed method, a mother wavelet is first selected with its central frequency (CF) and frequency bandwidth (FB) equal to those of the transmitted signal. The actual frequency of the received signal at a given depth is estimated through the autocorrelation technique. Then the mother wavelet is dilated using the ratio between the transmitted central frequency and the actual frequency as the scale factor. The generated daughter wavelet is finally used as the dynamic filter at this depth. Frequency-demodulated Gaussian wavelet is chosen in this paper because its power spectrum is well-matched with that of the transmitted ultrasound signal. The proposed method is evaluated by simulations using Field II program. Experiments are also conducted out on a standard ultrasound phantom using a 192-element transducer with the center frequency of 5 MHz. The phantom contains five point targets, five circular high scattering regions with diameters of 2, 3, 4, 5, 6 mm respectively, and five cysts with diameters of 6, 5, 4, 3, 2 mm respectively. Both simulation and experimental results show that optimal signal-to-noise ratio (SNR) can be obtained and useful information can be extracted along the depth direction irrespective of the diagnostic objects.

摘要

本文提出了一种使用高斯小波滤波器的新型动态滤波方法,用于去除超声回波信号中的噪声。在所提出的方法中,首先选择一个母小波,其中心频率(CF)和频率带宽(FB)与发射信号的相同。通过自相关技术估计给定深度处接收信号的实际频率。然后,使用发射中心频率与实际频率之比作为比例因子来扩展母小波。最终,生成的子小波被用作该深度处的动态滤波器。本文选择频率解调高斯小波是因为其功率谱与发射超声信号的功率谱匹配良好。所提出的方法通过使用Field II程序进行仿真评估。还使用中心频率为5 MHz的192阵元换能器在标准超声体模上进行了实验。该体模包含五个点状目标、五个直径分别为2、3、4、5、6 mm的圆形高散射区域以及五个直径分别为6、5、4、3、2 mm的囊肿。仿真和实验结果均表明,无论诊断对象如何,均可获得最佳信噪比(SNR),并可沿深度方向提取有用信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验