Suppr超能文献

一项使用理论分子描述符对皮肤吸收进行的定量构效关系(QSAR)研究。

A quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors.

作者信息

Basak S C, Mills D, Mumtaz M M

机构信息

University of Minnesota Duluth, Natural Resources Research Institute, 5013 Miller Trunk Hwy, Duluth, MN 55811, USA.

出版信息

SAR QSAR Environ Res. 2007 Jan-Mar;18(1-2):45-55. doi: 10.1080/10629360601033671.

Abstract

Quantitative structure-activity relationship (QSAR) models were developed for the prediction of dermal absorption based on experimental log Kp data for a diverse set of 101 chemicals obtained from the literature. Molecular descriptors including topostructural (TS), topochemical (TC), shape or three-dimensional (3D) and quantum chemical (QC) indices were calculated. Based on this information, a generic predictive model was created using the diverse set of 101 compounds. In addition, two submodels were prepared for subsets of 79 cyclic and 22 acyclic chemicals. A modified Gram-Schmidt variable reduction algorithm for descriptor thinning was followed by regression analyses using ridge regression (RR), principal components regression (PCR) and partial least squares regression (PLS). The RR results were found to be superior to PLS and PCR regressions. The cross-validated correlation coefficients for the full set and subsets were 0.67-0.87. Computational methods such as QSAR modelling can be used to augment existing data to prioritise chemicals that need to be studied further for toxicological evaluation and risk assessment.

摘要

基于从文献中获取的101种不同化学品的实验log Kp数据,开发了定量构效关系(QSAR)模型用于预测皮肤吸收。计算了包括拓扑结构(TS)、拓扑化学(TC)、形状或三维(3D)以及量子化学(QC)指标在内的分子描述符。基于这些信息,使用这101种化合物的数据集创建了一个通用预测模型。此外,还为79种环状化学品和22种非环状化学品的子集准备了两个子模型。采用改进的Gram-Schmidt变量约简算法进行描述符精简,随后使用岭回归(RR)、主成分回归(PCR)和偏最小二乘回归(PLS)进行回归分析。发现RR结果优于PLS和PCR回归。全集和子集的交叉验证相关系数为0.67 - 0.87。诸如QSAR建模等计算方法可用于扩充现有数据,以便对需要进一步进行毒理学评估和风险评估研究的化学品进行优先级排序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验