Pumera Martin, Merkoçi Arben, Alegret Salvador
ICYS, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
Electrophoresis. 2007 Apr;28(8):1274-80. doi: 10.1002/elps.200600632.
The performance of microchip electrophoresis/electrochemistry system with carbon nanotube (CNT) film electrodes was studied. Electrocatalytic activities of different carbon materials (single-wall CNT (SWCNT), multiwall CNT (MWCNT), carbon powder) cast on different electrode substrates (glassy carbon (GC), gold, and platinum) were compared in a microfluidic setup and their performance as microchip electrochemical detectors was assessed. An MWCNT film on a GC electrode shows electrocatalytic effect toward oxidation of dopamine (E(1/2) shift of 0.09 V) and catechol (E(1/2) shift of 0.19 V) when compared to a bare GC electrode, while other CNT/carbon powder films on the GC electrode display negligible effects. Modification of a gold electrode by graphite powder results in a strong electrocatalytic effect toward oxidation of dopamine and catechol (E(1/2) shift of 0.14 and 0.11 V, respectively). A significant shift of the half-wave potentials to lower values also provide the MWCNT film (E(1/2) shift of 0.08 and 0.08 V for dopamine and catechol, respectively) and the SWCNT film (E(1/2) shift of 0.10 V for catechol) when compared to a bare gold electrode. A microfluidic device with a CNT film-modified detection electrode displays greatly improved separation resolution (R(s)) by a factor of two compared to a bare electrode, reflecting the electrocatalytic activity of CNT.
研究了带有碳纳米管(CNT)薄膜电极的微芯片电泳/电化学系统的性能。在微流体装置中比较了不同碳材料(单壁碳纳米管(SWCNT)、多壁碳纳米管(MWCNT)、碳粉)涂覆在不同电极基底(玻碳(GC)、金和铂)上的电催化活性,并评估了它们作为微芯片电化学检测器的性能。与裸玻碳电极相比,玻碳电极上的多壁碳纳米管薄膜对多巴胺氧化表现出电催化作用(半波电位E(1/2)偏移0.09 V),对儿茶酚氧化也表现出电催化作用(半波电位E(1/2)偏移0.19 V),而玻碳电极上的其他碳纳米管/碳粉薄膜的影响可忽略不计。用石墨粉修饰金电极对多巴胺和儿茶酚的氧化产生强烈的电催化作用(半波电位E(1/2)分别偏移0.14 V和0.11 V)。与裸金电极相比,半波电位显著向更低值偏移,多壁碳纳米管薄膜(多巴胺和儿茶酚的半波电位E(1/2)分别偏移0.08 V和0.08 V)和单壁碳纳米管薄膜(儿茶酚的半波电位E(1/2)偏移0.10 V)也有此现象。与裸电极相比,带有碳纳米管薄膜修饰检测电极的微流体装置的分离分辨率(R(s))提高了两倍,这反映了碳纳米管的电催化活性。