文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

便携式重金属离子传感器的研究进展。

Advances in Portable Heavy Metal Ion Sensors.

机构信息

Department of Electronics, School of Physics and Electronics, Central South University, Changsha 410083, China.

出版信息

Sensors (Basel). 2023 Apr 20;23(8):4125. doi: 10.3390/s23084125.


DOI:10.3390/s23084125
PMID:37112466
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10143460/
Abstract

Heavy metal ions, one of the major pollutants in the environment, exhibit non-degradable and bio-chain accumulation characteristics, seriously damage the environment, and threaten human health. Traditional heavy metal ion detection methods often require complex and expensive instruments, professional operation, tedious sample preparation, high requirements for laboratory conditions, and operator professionalism, and they cannot be widely used in the field for real-time and rapid detection. Therefore, developing portable, highly sensitive, selective, and economical sensors is necessary for the detection of toxic metal ions in the field. This paper presents portable sensing based on optical and electrochemical methods for the in situ detection of trace heavy metal ions. Progress in research on portable sensor devices based on fluorescence, colorimetric, portable surface Raman enhancement, plasmon resonance, and various electrical parameter analysis principles is highlighted, and the characteristics of the detection limits, linear detection ranges, and stability of the various sensing methods are analyzed. Accordingly, this review provides a reference for the design of portable heavy metal ion sensing.

摘要

重金属离子是环境中的主要污染物之一,具有不可降解和生物链积累的特点,严重破坏环境,威胁人类健康。传统的重金属离子检测方法通常需要复杂且昂贵的仪器、专业的操作、繁琐的样品制备、对实验室条件的高要求以及操作人员的专业性,因此无法在现场进行实时和快速检测。因此,开发便携式、高灵敏度、选择性和经济实惠的传感器对于现场检测有毒金属离子是必要的。本文提出了基于光学和电化学方法的便携式传感技术,用于原位检测痕量重金属离子。重点介绍了基于荧光、比色、便携式表面拉曼增强、等离子体共振以及各种电参数分析原理的便携式传感器设备的研究进展,并分析了各种传感方法的检测限、线性检测范围和稳定性的特点。因此,本综述为便携式重金属离子传感的设计提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/364060ef48d9/sensors-23-04125-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/8deb38ec9b2e/sensors-23-04125-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/05fbf1cba3bf/sensors-23-04125-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/df94849e1e1b/sensors-23-04125-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/bfa8f9447f43/sensors-23-04125-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/19ecdae6ebcf/sensors-23-04125-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/94f807bee50d/sensors-23-04125-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/364060ef48d9/sensors-23-04125-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/8deb38ec9b2e/sensors-23-04125-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/05fbf1cba3bf/sensors-23-04125-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/df94849e1e1b/sensors-23-04125-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/bfa8f9447f43/sensors-23-04125-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/19ecdae6ebcf/sensors-23-04125-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/94f807bee50d/sensors-23-04125-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2628/10143460/364060ef48d9/sensors-23-04125-g007.jpg

相似文献

[1]
Advances in Portable Heavy Metal Ion Sensors.

Sensors (Basel). 2023-4-20

[2]
Electrochemical and Colorimetric Nanosensors for Detection of Heavy Metal Ions: A Review.

Sensors (Basel). 2023-11-9

[3]
Development of QDs-based nanosensors for heavy metal detection: A review on transducer principles and in-situ detection.

Talanta. 2022-3-1

[4]
Research progress in the detection of trace heavy metal ions in food samples.

Front Chem. 2024-5-28

[5]
detection of heavy metal ions in sewage with screen-printed electrode-based portable electrochemical sensors.

Analyst. 2021-9-13

[6]
Nanomaterials-Based Ion-Imprinted Electrochemical Sensors for Heavy Metal Ions Detection: A Review.

Biosensors (Basel). 2022-11-30

[7]
Magnetic FeO nanoparticles decorated phosphorus-doped biochar-attapulgite/bismuth film electrode for smartphone-operated wireless portable sensing of ultra-trace multiple heavy metal ions.

Mikrochim Acta. 2023-2-18

[8]
DNA as sensors and imaging agents for metal ions.

Inorg Chem. 2014-2-17

[9]
A portable lab-on-a-chip system for gold-nanoparticle-based colorimetric detection of metal ions in water.

Biomicrofluidics. 2014-8-28

[10]
Application of Nanomaterial Modified Aptamer-Based Electrochemical Sensor in Detection of Heavy Metal Ions.

Foods. 2022-5-12

引用本文的文献

[1]
Electrochemical Detection of Heavy Metals Using Graphene-Based Sensors: Advances, Meta-Analysis, Toxicity, and Sustainable Development Challenges.

Biosensors (Basel). 2025-8-4

[2]
Smartphone-integrated colorimetric nanosensor for azodicarbonamide detection in flour using BSA/MnO₂ nanoprobes.

Mikrochim Acta. 2025-8-19

[3]
Advances in mercury ion sensing using BODIPY-based compounds: a sexennial update.

RSC Adv. 2025-4-1

[4]
Coordination Chemistry of Mixed-Donor Pyridine-Containing Macrocyclic Ligands: From Optical to Redox Chemosensors for Heavy Metal Ions.

Molecules. 2024-12-31

[5]
A review of a colorimetric biosensor based on FeO nanozymes for food safety detection.

Anal Bioanal Chem. 2025-4

[6]
Revisiting the Role of Sensors for Shaping Plant Research: Applications and Future Perspectives.

Sensors (Basel). 2024-5-21

[7]
The complexometric behavior of selected aroyl-S,N-ketene acetals shows that they are more than AIEgens.

Sci Rep. 2024-5-31

[8]
Electrochemical and Colorimetric Nanosensors for Detection of Heavy Metal Ions: A Review.

Sensors (Basel). 2023-11-9

[9]
A ratiometric luminescence probe for selective detection of Ag based on thiolactic acid-capped gold nanoclusters with near-infrared emission and employing bovine serum albumin as a signal amplifier.

Mikrochim Acta. 2023-8-31

[10]
Pyrazoline-Based Fluorescent Probe: Synthesis, Characterization, Theoretical Simulation, and Detection of Picric Acid.

J Fluoresc. 2024-7

本文引用的文献

[1]
Chelate-free "turn-on"-type fluorescence detection of trivalent metal ions.

Chem Commun (Camb). 2022-11-8

[2]
Fluorescence "Turn-off" Sensing of Iron (III) Ions Utilizing Pyrazoline Based Sensor: Experimental and Computational Study.

J Fluoresc. 2022-11

[3]
Development of portable whole-cell biosensing platform with lyophilized bacteria and its application for rapid on-site detection of heavy metal toxicity without pre-resuscitation.

Anal Chim Acta. 2022-10-2

[4]
Detection of Heavy Metal Ions by Ratiometric Photoelectric Sensor.

J Agric Food Chem. 2022-9-21

[5]
Recent Advances of Optical Sensors for Copper Ion Detection.

Micromachines (Basel). 2022-8-11

[6]
Cadmium Ions' Trace-Level Detection Using a Portable Fiber Optic-Surface Plasmon Resonance Sensor.

Biosensors (Basel). 2022-7-27

[7]
Toward High Sensitivity: Perspective on Colorimetric Photonic Crystal Sensors.

Anal Chem. 2022-7-12

[8]
Application of Nanomaterial Modified Aptamer-Based Electrochemical Sensor in Detection of Heavy Metal Ions.

Foods. 2022-5-12

[9]
Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities.

Microorganisms. 2022-3-13

[10]
Advances in Electrochemical Detection Electrodes for As(III).

Nanomaterials (Basel). 2022-2-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索