Zhu Huaiqiu, Hu Gang-Qing, Yang Yi-Fan, Wang Jin, She Zhen-Su
State Key Lab for Turbulence and Complex Systems and Department of Biomedical Engineering, Peking University, Beijing 100871, China.
BMC Bioinformatics. 2007 Mar 16;8:97. doi: 10.1186/1471-2105-8-97.
Despite a remarkable success in the computational prediction of genes in Bacteria and Archaea, a lack of comprehensive understanding of prokaryotic gene structures prevents from further elucidation of differences among genomes. It continues to be interesting to develop new ab initio algorithms which not only accurately predict genes, but also facilitate comparative studies of prokaryotic genomes.
This paper describes a new prokaryotic genefinding algorithm based on a comprehensive statistical model of protein coding Open Reading Frames (ORFs) and Translation Initiation Sites (TISs). The former is based on a linguistic "Entropy Density Profile" (EDP) model of coding DNA sequence and the latter comprises several relevant features related to the translation initiation. They are combined to form a so-called Multivariate Entropy Distance (MED) algorithm, MED 2.0, that incorporates several strategies in the iterative program. The iterations enable us to develop a non-supervised learning process and to obtain a set of genome-specific parameters for the gene structure, before making the prediction of genes.
Results of extensive tests show that MED 2.0 achieves a competitive high performance in the gene prediction for both 5' and 3' end matches, compared to the current best prokaryotic gene finders. The advantage of the MED 2.0 is particularly evident for GC-rich genomes and archaeal genomes. Furthermore, the genome-specific parameters given by MED 2.0 match with the current understanding of prokaryotic genomes and may serve as tools for comparative genomic studies. In particular, MED 2.0 is shown to reveal divergent translation initiation mechanisms in archaeal genomes while making a more accurate prediction of TISs compared to the existing gene finders and the current GenBank annotation.
尽管在细菌和古菌基因的计算预测方面取得了显著成功,但对原核生物基因结构缺乏全面了解阻碍了对基因组间差异的进一步阐明。开发新的从头算法不仅能准确预测基因,还能促进原核生物基因组的比较研究,这仍然很有意义。
本文描述了一种基于蛋白质编码开放阅读框(ORF)和翻译起始位点(TIS)综合统计模型的新原核生物基因发现算法。前者基于编码DNA序列的语言“熵密度谱”(EDP)模型,后者包含与翻译起始相关的几个特征。它们被组合形成所谓的多变量熵距离(MED)算法,即MED 2.0,该算法在迭代程序中纳入了多种策略。这些迭代使我们能够开发一个无监督学习过程,并在预测基因之前获得一组基因结构的基因组特异性参数。
广泛测试结果表明,与当前最佳的原核生物基因发现工具相比,MED 2.0在5'和3'端匹配的基因预测中实现了具有竞争力的高性能。MED 2.0的优势在富含GC的基因组和古菌基因组中尤为明显。此外,MED 2.0给出的基因组特异性参数与当前对原核生物基因组的理解相匹配,可作为比较基因组研究的工具。特别是,MED 2.0在揭示古菌基因组中不同的翻译起始机制方面表现出色,同时与现有基因发现工具和当前的GenBank注释相比,对TIS的预测更准确。