Suppr超能文献

对代谢物结构域的探究。

An enquiry into metabolite domains.

作者信息

Barros L Felipe, Martínez Cristián

机构信息

Centro de Estudios Científicos, Valdivia, Chile.

出版信息

Biophys J. 2007 Jun 1;92(11):3878-84. doi: 10.1529/biophysj.106.100925. Epub 2007 Mar 16.

Abstract

It is currently assumed that two or more pools of the same metabolite can coexist in the cytosolic compartment of mammalian cells. These pools are thought to be generated by the differential subcellular location of enzymes and transporters, much in the way calcium microdomains arise by the combined workings of channels, buffers, and pumps. With the aim of estimating the amplitude and spatial dimensions of these metabolite pools, we developed an analytical tool based on Brownian diffusion and the turnover numbers of the proteins involved. The outcome of the analysis is that ATP, glucose, pyruvate, lactate, and glutamate cannot be concentrated at their sources to an extent that would affect their downstream targets. For these metabolites, and others produced by slow enzymes or transporters and present at micromolar concentrations or higher, the cytosol behaves as a well-mixed, homogenous compartment. In contrast, the analysis showed microdomains known to be generated by calcium channels and revealed that calcium and pH nanodomains are to be found in the vicinity of slow enzymes and transporters in the steady state. The analysis can be readily applied to any other molecule, provided knowledge is available about rate of production, average concentration, and diffusion coefficient. Our main conclusion is that the notion of cytosolic compartmentation of metabolites needs reevaluation, as it seems to be in conflict with the underlying physical chemistry.

摘要

目前认为,在哺乳动物细胞的胞质区室中,同一代谢物的两个或更多个池可以共存。这些池被认为是由酶和转运蛋白在亚细胞位置上的差异产生的,这与钙微区通过通道、缓冲液和泵的共同作用而产生的方式非常相似。为了估计这些代谢物池的幅度和空间维度,我们基于布朗扩散和相关蛋白质的周转数开发了一种分析工具。分析结果是,ATP、葡萄糖、丙酮酸、乳酸和谷氨酸不能在其来源处浓缩到影响其下游靶点的程度。对于这些代谢物以及由缓慢的酶或转运蛋白产生且以微摩尔浓度或更高浓度存在的其他代谢物,胞质表现为一个充分混合的均匀区室。相比之下,分析显示了已知由钙通道产生的微区,并揭示在稳态下,在缓慢的酶和转运蛋白附近可以发现钙和pH纳米区。只要有关于产生速率、平均浓度和扩散系数的知识,该分析就可以很容易地应用于任何其他分子。我们的主要结论是,代谢物在胞质中区室化的概念需要重新评估,因为它似乎与基础物理化学相冲突。

相似文献

1
An enquiry into metabolite domains.
Biophys J. 2007 Jun 1;92(11):3878-84. doi: 10.1529/biophysj.106.100925. Epub 2007 Mar 16.
3
Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
Bull Math Biol. 2006 Oct;68(7):1779-818. doi: 10.1007/s11538-005-9053-9. Epub 2006 Jul 11.
6
Changes in intracellular metabolite pools during growth of adherent MDCK cells in two different media.
Appl Microbiol Biotechnol. 2014 Jan;98(1):385-97. doi: 10.1007/s00253-013-5329-4. Epub 2013 Oct 31.
7
Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis.
Metallomics. 2010 May;2(5):306-17. doi: 10.1039/b926662c. Epub 2010 Apr 16.
9
Modeling of spatial metabolite distributions in the cardiac sarcomere.
Biophys J. 2007 May 15;92(10):3492-500. doi: 10.1529/biophysj.106.101352. Epub 2007 Feb 26.
10
The effect of residual Ca2+ on the stochastic gating of Ca2+-regulated Ca2+ channel models.
J Theor Biol. 2005 Jul 7;235(1):121-50. doi: 10.1016/j.jtbi.2004.12.024.

引用本文的文献

1
Lactate-induced metabolic signaling is the potential mechanism for reshaping the brain function - role of physical exercise.
Front Endocrinol (Lausanne). 2025 Jun 9;16:1598419. doi: 10.3389/fendo.2025.1598419. eCollection 2025.
3
Proton Transport in Cancer Cells: The Role of Carbonic Anhydrases.
Int J Mol Sci. 2021 Mar 20;22(6):3171. doi: 10.3390/ijms22063171.
5
Chromatin as a key consumer in the metabolite economy.
Nat Chem Biol. 2020 Jun;16(6):620-629. doi: 10.1038/s41589-020-0517-x. Epub 2020 May 22.
6
Cutting off the fuel supply to calcium pumps in pancreatic cancer cells: role of pyruvate kinase-M2 (PKM2).
Br J Cancer. 2020 Jan;122(2):266-278. doi: 10.1038/s41416-019-0675-3. Epub 2019 Dec 10.
7
The Astrocyte: Powerhouse and Recycling Center.
Cold Spring Harb Perspect Biol. 2015 Feb 13;7(12):a020396. doi: 10.1101/cshperspect.a020396.
8
In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner.
Nucleic Acids Res. 2014 Aug;42(14):9493-503. doi: 10.1093/nar/gku617. Epub 2014 Jul 17.
9
Small is fast: astrocytic glucose and lactate metabolism at cellular resolution.
Front Cell Neurosci. 2013 Mar 22;7:27. doi: 10.3389/fncel.2013.00027. eCollection 2013.

本文引用的文献

1
A quantitative overview of glucose dynamics in the gliovascular unit.
Glia. 2007 Sep;55(12):1222-1237. doi: 10.1002/glia.20375.
2
Failure of calcium microdomain generation and pathological consequences.
Cell Calcium. 2006 Nov-Dec;40(5-6):593-600. doi: 10.1016/j.ceca.2006.08.020. Epub 2006 Oct 17.
3
Calcium microdomains and gene expression in neurons and skeletal muscle cells.
Cell Calcium. 2006 Nov-Dec;40(5-6):575-83. doi: 10.1016/j.ceca.2006.08.021. Epub 2006 Oct 10.
4
Neuronal-glial glucose oxidation and glutamatergic-GABAergic function.
J Cereb Blood Flow Metab. 2006 Jul;26(7):865-77. doi: 10.1038/sj.jcbfm.9600263. Epub 2006 Jan 11.
5
Compartmentation of lactate originating from glycogen and glucose in cultured astrocytes.
Neurochem Res. 2005 Oct;30(10):1295-304. doi: 10.1007/s11064-005-8801-4.
7
8
Sodium ion apparent diffusion coefficient in living rat brain.
Magn Reson Med. 2005 May;53(5):1040-5. doi: 10.1002/mrm.20444.
9
Uptake of locally applied deoxyglucose, glucose and lactate by axons and Schwann cells of rat vagus nerve.
J Physiol. 2003 Jan 15;546(Pt 2):551-64. doi: 10.1113/jphysiol.2002.029751.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验