DeRonne Kevin W, Karypis George
Department of Computer Science & Engineering, Digital Technology Center, Army HPC Research Center, University of Minnesota, Minneapolis, MN 55455, USA.
Comput Syst Bioinformatics Conf. 2006:19-29.
Despite recent developments in protein structure prediction, an accurate new fold prediction algorithm remains elusive. One of the challenges facing current techniques is the size and complexity of the space containing possible structures for a query sequence. Traditionally, to explore this space fragment assembly approaches to new fold prediction have used stochastic optimization techniques. Here we examine deterministic algorithms for optimizing scoring functions in protein structure prediction. Two previously unused techniques are applied to the problem, called the Greedy algorithm and the Hill-climbing algorithm. The main difference between the two is that the latter implements a technique to overcome local minima. Experiments on a diverse set of 276 proteins show that the Hill-climbing algorithms consistently outperform existing approaches based on Simulated Annealing optimization (a traditional stochastic technique) in optimizing the root mean squared deviation (RMSD) between native and working structures.
尽管蛋白质结构预测方面最近有了进展,但准确的新折叠预测算法仍然难以捉摸。当前技术面临的挑战之一是包含查询序列可能结构的空间的大小和复杂性。传统上,为了探索这个空间,新折叠预测的片段组装方法使用了随机优化技术。在这里,我们研究用于优化蛋白质结构预测评分函数的确定性算法。两种以前未使用的技术被应用于这个问题,即贪心算法和爬山算法。两者之间的主要区别在于,后者实施了一种克服局部最小值的技术。对276种不同蛋白质的实验表明,在优化天然结构和工作结构之间的均方根偏差(RMSD)方面,爬山算法始终优于基于模拟退火优化(一种传统随机技术)的现有方法。