Cheon Sooyoung, Liang Faming
Department of Informational Statistics, Korea University, Jochiwon, South Korea.
Biosystems. 2011 Sep;105(3):243-9. doi: 10.1016/j.biosystems.2011.05.015. Epub 2011 Jun 6.
Recently, the stochastic approximation Monte Carlo algorithm has been proposed by Liang et al. (2007) as a general-purpose stochastic optimization and simulation algorithm. An annealing version of this algorithm was developed for real small protein folding problems. The numerical results indicate that it outperforms simulated annealing and conventional Monte Carlo algorithms as a stochastic optimization algorithm. We also propose one method for the use of secondary structures in protein folding. The predicted protein structures are rather close to the true structures.
最近,梁等人(2007年)提出了随机近似蒙特卡罗算法,作为一种通用的随机优化和模拟算法。针对实际的小蛋白质折叠问题开发了该算法的退火版本。数值结果表明,作为一种随机优化算法,它优于模拟退火算法和传统的蒙特卡罗算法。我们还提出了一种在蛋白质折叠中使用二级结构的方法。预测的蛋白质结构与真实结构相当接近。