Suppr超能文献

通过退火随机近似蒙特卡罗方法折叠小蛋白质。

Folding small proteins via annealing stochastic approximation Monte Carlo.

作者信息

Cheon Sooyoung, Liang Faming

机构信息

Department of Informational Statistics, Korea University, Jochiwon, South Korea.

出版信息

Biosystems. 2011 Sep;105(3):243-9. doi: 10.1016/j.biosystems.2011.05.015. Epub 2011 Jun 6.

Abstract

Recently, the stochastic approximation Monte Carlo algorithm has been proposed by Liang et al. (2007) as a general-purpose stochastic optimization and simulation algorithm. An annealing version of this algorithm was developed for real small protein folding problems. The numerical results indicate that it outperforms simulated annealing and conventional Monte Carlo algorithms as a stochastic optimization algorithm. We also propose one method for the use of secondary structures in protein folding. The predicted protein structures are rather close to the true structures.

摘要

最近,梁等人(2007年)提出了随机近似蒙特卡罗算法,作为一种通用的随机优化和模拟算法。针对实际的小蛋白质折叠问题开发了该算法的退火版本。数值结果表明,作为一种随机优化算法,它优于模拟退火算法和传统的蒙特卡罗算法。我们还提出了一种在蛋白质折叠中使用二级结构的方法。预测的蛋白质结构与真实结构相当接近。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验